Inequality with $(x+y)(y+z)(z+w)(w+x)=1$












3














Let $x,y,z,w>0$ and such that
$$(x+y)(y+z)(z+w)(w+x)=1.$$
Show that
$$sqrt[3]{xyz}+sqrt[3]{yzw}+sqrt[3]{zwx}+sqrt[3]{wxy}le 2.$$



I'm trying to use Holder's inequality
$$(sqrt[3]{xyz}+sqrt[3]{yzw})^3
le (x+y)(y+z)(z+w)$$

$$(sqrt[3]{zwx}+sqrt[3]{wxy})^3le (z+w)(w+x)(x+y)$$
so
$$sqrt[3]{xyz}+sqrt[3]{yzw}+sqrt[3]{zwx}+sqrt[3]{wxy}le sqrt[3]{(x+y)(y+z)(z+w)}+sqrt[3]{(z+w)(w+x)(x+y)}.$$










share|cite|improve this question





























    3














    Let $x,y,z,w>0$ and such that
    $$(x+y)(y+z)(z+w)(w+x)=1.$$
    Show that
    $$sqrt[3]{xyz}+sqrt[3]{yzw}+sqrt[3]{zwx}+sqrt[3]{wxy}le 2.$$



    I'm trying to use Holder's inequality
    $$(sqrt[3]{xyz}+sqrt[3]{yzw})^3
    le (x+y)(y+z)(z+w)$$

    $$(sqrt[3]{zwx}+sqrt[3]{wxy})^3le (z+w)(w+x)(x+y)$$
    so
    $$sqrt[3]{xyz}+sqrt[3]{yzw}+sqrt[3]{zwx}+sqrt[3]{wxy}le sqrt[3]{(x+y)(y+z)(z+w)}+sqrt[3]{(z+w)(w+x)(x+y)}.$$










    share|cite|improve this question



























      3












      3








      3


      3





      Let $x,y,z,w>0$ and such that
      $$(x+y)(y+z)(z+w)(w+x)=1.$$
      Show that
      $$sqrt[3]{xyz}+sqrt[3]{yzw}+sqrt[3]{zwx}+sqrt[3]{wxy}le 2.$$



      I'm trying to use Holder's inequality
      $$(sqrt[3]{xyz}+sqrt[3]{yzw})^3
      le (x+y)(y+z)(z+w)$$

      $$(sqrt[3]{zwx}+sqrt[3]{wxy})^3le (z+w)(w+x)(x+y)$$
      so
      $$sqrt[3]{xyz}+sqrt[3]{yzw}+sqrt[3]{zwx}+sqrt[3]{wxy}le sqrt[3]{(x+y)(y+z)(z+w)}+sqrt[3]{(z+w)(w+x)(x+y)}.$$










      share|cite|improve this question















      Let $x,y,z,w>0$ and such that
      $$(x+y)(y+z)(z+w)(w+x)=1.$$
      Show that
      $$sqrt[3]{xyz}+sqrt[3]{yzw}+sqrt[3]{zwx}+sqrt[3]{wxy}le 2.$$



      I'm trying to use Holder's inequality
      $$(sqrt[3]{xyz}+sqrt[3]{yzw})^3
      le (x+y)(y+z)(z+w)$$

      $$(sqrt[3]{zwx}+sqrt[3]{wxy})^3le (z+w)(w+x)(x+y)$$
      so
      $$sqrt[3]{xyz}+sqrt[3]{yzw}+sqrt[3]{zwx}+sqrt[3]{wxy}le sqrt[3]{(x+y)(y+z)(z+w)}+sqrt[3]{(z+w)(w+x)(x+y)}.$$







      inequality radicals a.m.-g.m.-inequality holder-inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 29 '18 at 5:23









      Michael Rozenberg

      97.4k1589188




      97.4k1589188










      asked Dec 29 '18 at 1:19









      inequalityinequality

      701520




      701520






















          2 Answers
          2






          active

          oldest

          votes


















          3














          Since $$prod_{cyc}(x+y)-sum_{cyc}xsum_{cyc}xyz=(xz-yw)^2geq0,$$ by Holder we obtain:



          $$2=2left(prod_{cyc}(x+y)right)^{frac{1}{4}}geq2left(sum_{cyc}xsum_{cyc}xyzright)^{frac{1}{4}}=$$
          $$=sqrt[4]{left(4^2sum_{cyc}xyzright)sum_{cyc}x}geqsqrt[4]{left(sum_{cyc}sqrt[3]{xyz}right)^3sum_{cyc}x}.$$
          Thus, it's enough to prove that
          $$sum_{cyc}xgeqsum_{cyc}sqrt[3]{xyz},$$ which is true by AM-GM:
          $$sum_{cyc}x=frac{1}{3}sum_{cyc}(x+y+z)geqfrac{1}{3}sum_{cyc}3sqrt[3]{xyz}=sum_{cyc}sqrt[3]{xyz}.$$
          Done!



          I used Holder for two sequences:
          $$16sum_{cyc}xyz=left(sum_{cyc}1right)^2sum_{cyc}xyzgeqleft(sum_{cyc}sqrt[3]{1^2xyz}right)^3=left(sum_{cyc}sqrt[3]{xyz}right)^3$$






          share|cite|improve this answer























          • Can you clarify the Holder part?
            – Pratyush Sarkar
            Dec 29 '18 at 5:51






          • 1




            @Pratyush Sarkar I added something. See now.
            – Michael Rozenberg
            Dec 29 '18 at 6:46






          • 1




            Ah, thanks that helps a lot. Nice concise answer.
            – Pratyush Sarkar
            Dec 29 '18 at 6:56





















          1














          This does not seem the best, but using only Holder's inequality, we can get
          $$begin{eqnarray}
          S^{12}&le& (x+y+x+y)(y+y+x+x)(y+y+x+x)(z+y+z+y)\&&(y+z+z+y)(y+z+z+y)(z+w+z+w)(z+z+w+w)\&&(z+z+w+w)(x+w+x+w)(x+w+w+x)(x+w+w+x) = 2^{12}left(prod_{text{cyc}}(x+y)right)^3 =2^{12},
          end{eqnarray}$$
          for $S= sqrt[3]{xyz}+sqrt[3]{yzw}+sqrt[3]{zwx}+sqrt[3]{wxy}.$






          share|cite|improve this answer





















          • Very nice solution! +1
            – Michael Rozenberg
            Dec 30 '18 at 9:53













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055447%2finequality-with-xyyzzwwx-1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3














          Since $$prod_{cyc}(x+y)-sum_{cyc}xsum_{cyc}xyz=(xz-yw)^2geq0,$$ by Holder we obtain:



          $$2=2left(prod_{cyc}(x+y)right)^{frac{1}{4}}geq2left(sum_{cyc}xsum_{cyc}xyzright)^{frac{1}{4}}=$$
          $$=sqrt[4]{left(4^2sum_{cyc}xyzright)sum_{cyc}x}geqsqrt[4]{left(sum_{cyc}sqrt[3]{xyz}right)^3sum_{cyc}x}.$$
          Thus, it's enough to prove that
          $$sum_{cyc}xgeqsum_{cyc}sqrt[3]{xyz},$$ which is true by AM-GM:
          $$sum_{cyc}x=frac{1}{3}sum_{cyc}(x+y+z)geqfrac{1}{3}sum_{cyc}3sqrt[3]{xyz}=sum_{cyc}sqrt[3]{xyz}.$$
          Done!



          I used Holder for two sequences:
          $$16sum_{cyc}xyz=left(sum_{cyc}1right)^2sum_{cyc}xyzgeqleft(sum_{cyc}sqrt[3]{1^2xyz}right)^3=left(sum_{cyc}sqrt[3]{xyz}right)^3$$






          share|cite|improve this answer























          • Can you clarify the Holder part?
            – Pratyush Sarkar
            Dec 29 '18 at 5:51






          • 1




            @Pratyush Sarkar I added something. See now.
            – Michael Rozenberg
            Dec 29 '18 at 6:46






          • 1




            Ah, thanks that helps a lot. Nice concise answer.
            – Pratyush Sarkar
            Dec 29 '18 at 6:56


















          3














          Since $$prod_{cyc}(x+y)-sum_{cyc}xsum_{cyc}xyz=(xz-yw)^2geq0,$$ by Holder we obtain:



          $$2=2left(prod_{cyc}(x+y)right)^{frac{1}{4}}geq2left(sum_{cyc}xsum_{cyc}xyzright)^{frac{1}{4}}=$$
          $$=sqrt[4]{left(4^2sum_{cyc}xyzright)sum_{cyc}x}geqsqrt[4]{left(sum_{cyc}sqrt[3]{xyz}right)^3sum_{cyc}x}.$$
          Thus, it's enough to prove that
          $$sum_{cyc}xgeqsum_{cyc}sqrt[3]{xyz},$$ which is true by AM-GM:
          $$sum_{cyc}x=frac{1}{3}sum_{cyc}(x+y+z)geqfrac{1}{3}sum_{cyc}3sqrt[3]{xyz}=sum_{cyc}sqrt[3]{xyz}.$$
          Done!



          I used Holder for two sequences:
          $$16sum_{cyc}xyz=left(sum_{cyc}1right)^2sum_{cyc}xyzgeqleft(sum_{cyc}sqrt[3]{1^2xyz}right)^3=left(sum_{cyc}sqrt[3]{xyz}right)^3$$






          share|cite|improve this answer























          • Can you clarify the Holder part?
            – Pratyush Sarkar
            Dec 29 '18 at 5:51






          • 1




            @Pratyush Sarkar I added something. See now.
            – Michael Rozenberg
            Dec 29 '18 at 6:46






          • 1




            Ah, thanks that helps a lot. Nice concise answer.
            – Pratyush Sarkar
            Dec 29 '18 at 6:56
















          3












          3








          3






          Since $$prod_{cyc}(x+y)-sum_{cyc}xsum_{cyc}xyz=(xz-yw)^2geq0,$$ by Holder we obtain:



          $$2=2left(prod_{cyc}(x+y)right)^{frac{1}{4}}geq2left(sum_{cyc}xsum_{cyc}xyzright)^{frac{1}{4}}=$$
          $$=sqrt[4]{left(4^2sum_{cyc}xyzright)sum_{cyc}x}geqsqrt[4]{left(sum_{cyc}sqrt[3]{xyz}right)^3sum_{cyc}x}.$$
          Thus, it's enough to prove that
          $$sum_{cyc}xgeqsum_{cyc}sqrt[3]{xyz},$$ which is true by AM-GM:
          $$sum_{cyc}x=frac{1}{3}sum_{cyc}(x+y+z)geqfrac{1}{3}sum_{cyc}3sqrt[3]{xyz}=sum_{cyc}sqrt[3]{xyz}.$$
          Done!



          I used Holder for two sequences:
          $$16sum_{cyc}xyz=left(sum_{cyc}1right)^2sum_{cyc}xyzgeqleft(sum_{cyc}sqrt[3]{1^2xyz}right)^3=left(sum_{cyc}sqrt[3]{xyz}right)^3$$






          share|cite|improve this answer














          Since $$prod_{cyc}(x+y)-sum_{cyc}xsum_{cyc}xyz=(xz-yw)^2geq0,$$ by Holder we obtain:



          $$2=2left(prod_{cyc}(x+y)right)^{frac{1}{4}}geq2left(sum_{cyc}xsum_{cyc}xyzright)^{frac{1}{4}}=$$
          $$=sqrt[4]{left(4^2sum_{cyc}xyzright)sum_{cyc}x}geqsqrt[4]{left(sum_{cyc}sqrt[3]{xyz}right)^3sum_{cyc}x}.$$
          Thus, it's enough to prove that
          $$sum_{cyc}xgeqsum_{cyc}sqrt[3]{xyz},$$ which is true by AM-GM:
          $$sum_{cyc}x=frac{1}{3}sum_{cyc}(x+y+z)geqfrac{1}{3}sum_{cyc}3sqrt[3]{xyz}=sum_{cyc}sqrt[3]{xyz}.$$
          Done!



          I used Holder for two sequences:
          $$16sum_{cyc}xyz=left(sum_{cyc}1right)^2sum_{cyc}xyzgeqleft(sum_{cyc}sqrt[3]{1^2xyz}right)^3=left(sum_{cyc}sqrt[3]{xyz}right)^3$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 29 '18 at 6:45

























          answered Dec 29 '18 at 5:00









          Michael RozenbergMichael Rozenberg

          97.4k1589188




          97.4k1589188












          • Can you clarify the Holder part?
            – Pratyush Sarkar
            Dec 29 '18 at 5:51






          • 1




            @Pratyush Sarkar I added something. See now.
            – Michael Rozenberg
            Dec 29 '18 at 6:46






          • 1




            Ah, thanks that helps a lot. Nice concise answer.
            – Pratyush Sarkar
            Dec 29 '18 at 6:56




















          • Can you clarify the Holder part?
            – Pratyush Sarkar
            Dec 29 '18 at 5:51






          • 1




            @Pratyush Sarkar I added something. See now.
            – Michael Rozenberg
            Dec 29 '18 at 6:46






          • 1




            Ah, thanks that helps a lot. Nice concise answer.
            – Pratyush Sarkar
            Dec 29 '18 at 6:56


















          Can you clarify the Holder part?
          – Pratyush Sarkar
          Dec 29 '18 at 5:51




          Can you clarify the Holder part?
          – Pratyush Sarkar
          Dec 29 '18 at 5:51




          1




          1




          @Pratyush Sarkar I added something. See now.
          – Michael Rozenberg
          Dec 29 '18 at 6:46




          @Pratyush Sarkar I added something. See now.
          – Michael Rozenberg
          Dec 29 '18 at 6:46




          1




          1




          Ah, thanks that helps a lot. Nice concise answer.
          – Pratyush Sarkar
          Dec 29 '18 at 6:56






          Ah, thanks that helps a lot. Nice concise answer.
          – Pratyush Sarkar
          Dec 29 '18 at 6:56













          1














          This does not seem the best, but using only Holder's inequality, we can get
          $$begin{eqnarray}
          S^{12}&le& (x+y+x+y)(y+y+x+x)(y+y+x+x)(z+y+z+y)\&&(y+z+z+y)(y+z+z+y)(z+w+z+w)(z+z+w+w)\&&(z+z+w+w)(x+w+x+w)(x+w+w+x)(x+w+w+x) = 2^{12}left(prod_{text{cyc}}(x+y)right)^3 =2^{12},
          end{eqnarray}$$
          for $S= sqrt[3]{xyz}+sqrt[3]{yzw}+sqrt[3]{zwx}+sqrt[3]{wxy}.$






          share|cite|improve this answer





















          • Very nice solution! +1
            – Michael Rozenberg
            Dec 30 '18 at 9:53


















          1














          This does not seem the best, but using only Holder's inequality, we can get
          $$begin{eqnarray}
          S^{12}&le& (x+y+x+y)(y+y+x+x)(y+y+x+x)(z+y+z+y)\&&(y+z+z+y)(y+z+z+y)(z+w+z+w)(z+z+w+w)\&&(z+z+w+w)(x+w+x+w)(x+w+w+x)(x+w+w+x) = 2^{12}left(prod_{text{cyc}}(x+y)right)^3 =2^{12},
          end{eqnarray}$$
          for $S= sqrt[3]{xyz}+sqrt[3]{yzw}+sqrt[3]{zwx}+sqrt[3]{wxy}.$






          share|cite|improve this answer





















          • Very nice solution! +1
            – Michael Rozenberg
            Dec 30 '18 at 9:53
















          1












          1








          1






          This does not seem the best, but using only Holder's inequality, we can get
          $$begin{eqnarray}
          S^{12}&le& (x+y+x+y)(y+y+x+x)(y+y+x+x)(z+y+z+y)\&&(y+z+z+y)(y+z+z+y)(z+w+z+w)(z+z+w+w)\&&(z+z+w+w)(x+w+x+w)(x+w+w+x)(x+w+w+x) = 2^{12}left(prod_{text{cyc}}(x+y)right)^3 =2^{12},
          end{eqnarray}$$
          for $S= sqrt[3]{xyz}+sqrt[3]{yzw}+sqrt[3]{zwx}+sqrt[3]{wxy}.$






          share|cite|improve this answer












          This does not seem the best, but using only Holder's inequality, we can get
          $$begin{eqnarray}
          S^{12}&le& (x+y+x+y)(y+y+x+x)(y+y+x+x)(z+y+z+y)\&&(y+z+z+y)(y+z+z+y)(z+w+z+w)(z+z+w+w)\&&(z+z+w+w)(x+w+x+w)(x+w+w+x)(x+w+w+x) = 2^{12}left(prod_{text{cyc}}(x+y)right)^3 =2^{12},
          end{eqnarray}$$
          for $S= sqrt[3]{xyz}+sqrt[3]{yzw}+sqrt[3]{zwx}+sqrt[3]{wxy}.$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 30 '18 at 8:59









          SongSong

          6,640319




          6,640319












          • Very nice solution! +1
            – Michael Rozenberg
            Dec 30 '18 at 9:53




















          • Very nice solution! +1
            – Michael Rozenberg
            Dec 30 '18 at 9:53


















          Very nice solution! +1
          – Michael Rozenberg
          Dec 30 '18 at 9:53






          Very nice solution! +1
          – Michael Rozenberg
          Dec 30 '18 at 9:53




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055447%2finequality-with-xyyzzwwx-1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Human spaceflight

          Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

          File:DeusFollowingSea.jpg