How to prove a recurrence with multiple terms?












0














I have to prove that the recursion:



$$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
$$
is
$$
T(n) = Θ(n*log n)$$



As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?










share|cite|improve this question
























  • Use Masters Theorem Directly
    – Rakesh Bhatt
    Dec 29 '18 at 3:11
















0














I have to prove that the recursion:



$$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
$$
is
$$
T(n) = Θ(n*log n)$$



As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?










share|cite|improve this question
























  • Use Masters Theorem Directly
    – Rakesh Bhatt
    Dec 29 '18 at 3:11














0












0








0







I have to prove that the recursion:



$$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
$$
is
$$
T(n) = Θ(n*log n)$$



As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?










share|cite|improve this question















I have to prove that the recursion:



$$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
$$
is
$$
T(n) = Θ(n*log n)$$



As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?







algorithms asymptotics recursive-algorithms recursion






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 19 '15 at 16:02









Irddo

1,386819




1,386819










asked Feb 12 '15 at 0:37









CheekyKontBrahCheekyKontBrah

511114




511114












  • Use Masters Theorem Directly
    – Rakesh Bhatt
    Dec 29 '18 at 3:11


















  • Use Masters Theorem Directly
    – Rakesh Bhatt
    Dec 29 '18 at 3:11
















Use Masters Theorem Directly
– Rakesh Bhatt
Dec 29 '18 at 3:11




Use Masters Theorem Directly
– Rakesh Bhatt
Dec 29 '18 at 3:11










1 Answer
1






active

oldest

votes


















0





+50









$% Predefined Typography
newcommand{paren} [1]{left({#1}right)}
newcommand{bparen}[1]{bigg({#1}bigg)}
newcommand{brace} [1]{left{{#1}right}}
newcommand{bbrace}[1]{bigg{{#1}bigg}}
newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
newcommand{mag} [1]{leftlVert{#1}rightrVert}
newcommand{bmag} [1]{biggVert{#1}biggVert}
newcommand{abs} [1]{leftvert{#1}rightvert}
newcommand{babs} [1]{biggvert{#1}biggvert}
%
newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
newcommand{label} [2]{underbrace{#1}_{#2}}
newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
newcommand{ulabel} [2]{overbrace{#1}_{#2}}
%
newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
%
newcommand{iint}[2]{int {#1}~{rm d}{#2}}
newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
%
newcommand{ii}{{rm i}}
newcommand{ee}{{rm e}}
newcommand{exp}[1] { {rm e}^{large{#1}} }
%
newcommand{and} {~text{and}~}
newcommand{xor} {~text{xor}~}
newcommand{or} {~text{or}~}
newcommand{T} {text{True}}
newcommand{F} {text{False}}
%
newcommand{red} [1]{color{red}{#1}}
newcommand{blue} [1]{color{blue}{#1}}
newcommand{green}[1]{color{green}{#1}}
$




$$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
$$Downarrow$$
$$T(n) = Theta(n~log n)$$




You can just use strong induction on the definition directly:




For some positive $k_1$ and $k_2$, and $n_0$:
$$f in Theta(g)$$
is defined as
$$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$




So inductively prove:



$$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
$$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$



So we are going to need the inductive assumptions that



$$k_1 ~frac n3 ~log paren{frac n3}
le
Tparen{frac{n}{3}}
le k_2~ frac n3~log paren{frac n3} tag{A2}$$



$$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
le
Tparen{frac{2n}{3}}
le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$



So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:



$$begin{align}
k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
& k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
end{align}$$



(B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:



$$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
$$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$



So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1144367%2fhow-to-prove-a-recurrence-with-multiple-terms%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0





    +50









    $% Predefined Typography
    newcommand{paren} [1]{left({#1}right)}
    newcommand{bparen}[1]{bigg({#1}bigg)}
    newcommand{brace} [1]{left{{#1}right}}
    newcommand{bbrace}[1]{bigg{{#1}bigg}}
    newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
    newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
    newcommand{mag} [1]{leftlVert{#1}rightrVert}
    newcommand{bmag} [1]{biggVert{#1}biggVert}
    newcommand{abs} [1]{leftvert{#1}rightvert}
    newcommand{babs} [1]{biggvert{#1}biggvert}
    %
    newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
    newcommand{label} [2]{underbrace{#1}_{#2}}
    newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
    newcommand{ulabel} [2]{overbrace{#1}_{#2}}
    %
    newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
    newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
    %
    newcommand{iint}[2]{int {#1}~{rm d}{#2}}
    newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
    newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
    newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
    newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
    newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
    newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
    newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
    %
    newcommand{ii}{{rm i}}
    newcommand{ee}{{rm e}}
    newcommand{exp}[1] { {rm e}^{large{#1}} }
    %
    newcommand{and} {~text{and}~}
    newcommand{xor} {~text{xor}~}
    newcommand{or} {~text{or}~}
    newcommand{T} {text{True}}
    newcommand{F} {text{False}}
    %
    newcommand{red} [1]{color{red}{#1}}
    newcommand{blue} [1]{color{blue}{#1}}
    newcommand{green}[1]{color{green}{#1}}
    $




    $$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
    $$Downarrow$$
    $$T(n) = Theta(n~log n)$$




    You can just use strong induction on the definition directly:




    For some positive $k_1$ and $k_2$, and $n_0$:
    $$f in Theta(g)$$
    is defined as
    $$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$




    So inductively prove:



    $$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
    $$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$



    So we are going to need the inductive assumptions that



    $$k_1 ~frac n3 ~log paren{frac n3}
    le
    Tparen{frac{n}{3}}
    le k_2~ frac n3~log paren{frac n3} tag{A2}$$



    $$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
    le
    Tparen{frac{2n}{3}}
    le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$



    So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:



    $$begin{align}
    k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
    & k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
    end{align}$$



    (B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:



    $$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
    $$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$



    So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.






    share|cite|improve this answer


























      0





      +50









      $% Predefined Typography
      newcommand{paren} [1]{left({#1}right)}
      newcommand{bparen}[1]{bigg({#1}bigg)}
      newcommand{brace} [1]{left{{#1}right}}
      newcommand{bbrace}[1]{bigg{{#1}bigg}}
      newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
      newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
      newcommand{mag} [1]{leftlVert{#1}rightrVert}
      newcommand{bmag} [1]{biggVert{#1}biggVert}
      newcommand{abs} [1]{leftvert{#1}rightvert}
      newcommand{babs} [1]{biggvert{#1}biggvert}
      %
      newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
      newcommand{label} [2]{underbrace{#1}_{#2}}
      newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
      newcommand{ulabel} [2]{overbrace{#1}_{#2}}
      %
      newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
      newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
      %
      newcommand{iint}[2]{int {#1}~{rm d}{#2}}
      newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
      newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
      newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
      newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
      newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
      newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
      newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
      %
      newcommand{ii}{{rm i}}
      newcommand{ee}{{rm e}}
      newcommand{exp}[1] { {rm e}^{large{#1}} }
      %
      newcommand{and} {~text{and}~}
      newcommand{xor} {~text{xor}~}
      newcommand{or} {~text{or}~}
      newcommand{T} {text{True}}
      newcommand{F} {text{False}}
      %
      newcommand{red} [1]{color{red}{#1}}
      newcommand{blue} [1]{color{blue}{#1}}
      newcommand{green}[1]{color{green}{#1}}
      $




      $$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
      $$Downarrow$$
      $$T(n) = Theta(n~log n)$$




      You can just use strong induction on the definition directly:




      For some positive $k_1$ and $k_2$, and $n_0$:
      $$f in Theta(g)$$
      is defined as
      $$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$




      So inductively prove:



      $$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
      $$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$



      So we are going to need the inductive assumptions that



      $$k_1 ~frac n3 ~log paren{frac n3}
      le
      Tparen{frac{n}{3}}
      le k_2~ frac n3~log paren{frac n3} tag{A2}$$



      $$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
      le
      Tparen{frac{2n}{3}}
      le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$



      So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:



      $$begin{align}
      k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
      & k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
      end{align}$$



      (B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:



      $$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
      $$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$



      So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.






      share|cite|improve this answer
























        0





        +50







        0





        +50



        0




        +50




        $% Predefined Typography
        newcommand{paren} [1]{left({#1}right)}
        newcommand{bparen}[1]{bigg({#1}bigg)}
        newcommand{brace} [1]{left{{#1}right}}
        newcommand{bbrace}[1]{bigg{{#1}bigg}}
        newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
        newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
        newcommand{mag} [1]{leftlVert{#1}rightrVert}
        newcommand{bmag} [1]{biggVert{#1}biggVert}
        newcommand{abs} [1]{leftvert{#1}rightvert}
        newcommand{babs} [1]{biggvert{#1}biggvert}
        %
        newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
        newcommand{label} [2]{underbrace{#1}_{#2}}
        newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
        newcommand{ulabel} [2]{overbrace{#1}_{#2}}
        %
        newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
        newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
        %
        newcommand{iint}[2]{int {#1}~{rm d}{#2}}
        newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
        newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
        newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
        newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
        newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
        newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
        newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
        %
        newcommand{ii}{{rm i}}
        newcommand{ee}{{rm e}}
        newcommand{exp}[1] { {rm e}^{large{#1}} }
        %
        newcommand{and} {~text{and}~}
        newcommand{xor} {~text{xor}~}
        newcommand{or} {~text{or}~}
        newcommand{T} {text{True}}
        newcommand{F} {text{False}}
        %
        newcommand{red} [1]{color{red}{#1}}
        newcommand{blue} [1]{color{blue}{#1}}
        newcommand{green}[1]{color{green}{#1}}
        $




        $$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
        $$Downarrow$$
        $$T(n) = Theta(n~log n)$$




        You can just use strong induction on the definition directly:




        For some positive $k_1$ and $k_2$, and $n_0$:
        $$f in Theta(g)$$
        is defined as
        $$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$




        So inductively prove:



        $$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
        $$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$



        So we are going to need the inductive assumptions that



        $$k_1 ~frac n3 ~log paren{frac n3}
        le
        Tparen{frac{n}{3}}
        le k_2~ frac n3~log paren{frac n3} tag{A2}$$



        $$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
        le
        Tparen{frac{2n}{3}}
        le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$



        So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:



        $$begin{align}
        k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
        & k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
        end{align}$$



        (B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:



        $$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
        $$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$



        So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.






        share|cite|improve this answer












        $% Predefined Typography
        newcommand{paren} [1]{left({#1}right)}
        newcommand{bparen}[1]{bigg({#1}bigg)}
        newcommand{brace} [1]{left{{#1}right}}
        newcommand{bbrace}[1]{bigg{{#1}bigg}}
        newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
        newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
        newcommand{mag} [1]{leftlVert{#1}rightrVert}
        newcommand{bmag} [1]{biggVert{#1}biggVert}
        newcommand{abs} [1]{leftvert{#1}rightvert}
        newcommand{babs} [1]{biggvert{#1}biggvert}
        %
        newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
        newcommand{label} [2]{underbrace{#1}_{#2}}
        newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
        newcommand{ulabel} [2]{overbrace{#1}_{#2}}
        %
        newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
        newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
        %
        newcommand{iint}[2]{int {#1}~{rm d}{#2}}
        newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
        newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
        newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
        newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
        newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
        newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
        newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
        %
        newcommand{ii}{{rm i}}
        newcommand{ee}{{rm e}}
        newcommand{exp}[1] { {rm e}^{large{#1}} }
        %
        newcommand{and} {~text{and}~}
        newcommand{xor} {~text{xor}~}
        newcommand{or} {~text{or}~}
        newcommand{T} {text{True}}
        newcommand{F} {text{False}}
        %
        newcommand{red} [1]{color{red}{#1}}
        newcommand{blue} [1]{color{blue}{#1}}
        newcommand{green}[1]{color{green}{#1}}
        $




        $$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
        $$Downarrow$$
        $$T(n) = Theta(n~log n)$$




        You can just use strong induction on the definition directly:




        For some positive $k_1$ and $k_2$, and $n_0$:
        $$f in Theta(g)$$
        is defined as
        $$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$




        So inductively prove:



        $$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
        $$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$



        So we are going to need the inductive assumptions that



        $$k_1 ~frac n3 ~log paren{frac n3}
        le
        Tparen{frac{n}{3}}
        le k_2~ frac n3~log paren{frac n3} tag{A2}$$



        $$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
        le
        Tparen{frac{2n}{3}}
        le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$



        So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:



        $$begin{align}
        k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
        & k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
        end{align}$$



        (B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:



        $$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
        $$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$



        So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Feb 19 '15 at 17:07









        DanielVDanielV

        17.8k42754




        17.8k42754






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1144367%2fhow-to-prove-a-recurrence-with-multiple-terms%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            File:DeusFollowingSea.jpg