Evaluate $ limlimits_{n to infty}sumlimits_{k=2}^{n} frac{1}{sqrt[k]{n^k+n+1}+1} $












2












$begingroup$


$$ lim_{n to infty}sum_{k=2}^{n} frac{1}{sqrt[k]{n^k+n+1}+1} $$



I expect the squeeze theorem helps us solving this but I can't find the inequality.



The result should be $1$.










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    $$ lim_{n to infty}sum_{k=2}^{n} frac{1}{sqrt[k]{n^k+n+1}+1} $$



    I expect the squeeze theorem helps us solving this but I can't find the inequality.



    The result should be $1$.










    share|cite|improve this question









    $endgroup$















      2












      2








      2


      2



      $begingroup$


      $$ lim_{n to infty}sum_{k=2}^{n} frac{1}{sqrt[k]{n^k+n+1}+1} $$



      I expect the squeeze theorem helps us solving this but I can't find the inequality.



      The result should be $1$.










      share|cite|improve this question









      $endgroup$




      $$ lim_{n to infty}sum_{k=2}^{n} frac{1}{sqrt[k]{n^k+n+1}+1} $$



      I expect the squeeze theorem helps us solving this but I can't find the inequality.



      The result should be $1$.







      calculus limits






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 30 '18 at 17:35









      SADBOYSSADBOYS

      4288




      4288






















          2 Answers
          2






          active

          oldest

          votes


















          7












          $begingroup$

          Try $(n+1)^kgt n^k+n+1gt n^k$






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            Consider
            $s(n)
            =sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}
            $

            where
            $f(n) ge 0$ and
            $f(n)/n^{c} to 0$
            for some $c > 0$.



            $begin{array}\
            s(n)
            &=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
            &ltsum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k}}\
            &=sum_{k=2}^{n} dfrac{1}{n}\
            &to ln(n)-1+gamma\
            end{array}
            $



            Similarly,
            since
            $(1+x)^k ge 1+kx,
            (1+x/k)^k ge 1+x$

            so
            $(1+x)^{1/k} le 1+x/k$,



            $begin{array}\
            s(n)
            &=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
            &=sum_{k=2}^{n} dfrac{1}{nsqrt[k]{1+f(n)/n^k}+1}\
            &=sum_{k=2}^{n} dfrac1{n}dfrac{1}{sqrt[k]{1+f(n)/n^k}+1/n}\
            &gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
            end{array}
            $



            Since $f(n)/n^c to 0$
            for some $c > 0$,
            $f(n) < an^c$
            for some $a > 0$
            so



            $begin{array}\
            f(n)/(kn^k)
            &lt an^c/(kn^k)\
            &=a/(kn^{k-c})\
            &lt a/(kn)
            qquadtext{for } k ge c+1\
            &lt 1/n
            qquadtext{for } k > a\
            end{array}
            $



            Therefore,
            letting
            $p(n) = max(c+1, a)$,
            $f(n)/(kn^k) < 1/n$
            for $k > p(n)$.



            Therefore



            $begin{array}\
            s(n)
            &gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
            &gesum_{k=2}^{p(n)} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}+sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
            &gtsum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+2/n}\
            &gtsum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{2}\
            &gt frac12ln(n/p(n))\
            &to infty
            qquadtext{since }n/p(n) to infty\
            end{array}
            $






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057044%2fevaluate-lim-limits-n-to-infty-sum-limits-k-2n-frac1-sqrtknk%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              7












              $begingroup$

              Try $(n+1)^kgt n^k+n+1gt n^k$






              share|cite|improve this answer









              $endgroup$


















                7












                $begingroup$

                Try $(n+1)^kgt n^k+n+1gt n^k$






                share|cite|improve this answer









                $endgroup$
















                  7












                  7








                  7





                  $begingroup$

                  Try $(n+1)^kgt n^k+n+1gt n^k$






                  share|cite|improve this answer









                  $endgroup$



                  Try $(n+1)^kgt n^k+n+1gt n^k$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 30 '18 at 17:39









                  Mark BennetMark Bennet

                  80.8k981179




                  80.8k981179























                      1












                      $begingroup$

                      Consider
                      $s(n)
                      =sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}
                      $

                      where
                      $f(n) ge 0$ and
                      $f(n)/n^{c} to 0$
                      for some $c > 0$.



                      $begin{array}\
                      s(n)
                      &=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
                      &ltsum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k}}\
                      &=sum_{k=2}^{n} dfrac{1}{n}\
                      &to ln(n)-1+gamma\
                      end{array}
                      $



                      Similarly,
                      since
                      $(1+x)^k ge 1+kx,
                      (1+x/k)^k ge 1+x$

                      so
                      $(1+x)^{1/k} le 1+x/k$,



                      $begin{array}\
                      s(n)
                      &=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
                      &=sum_{k=2}^{n} dfrac{1}{nsqrt[k]{1+f(n)/n^k}+1}\
                      &=sum_{k=2}^{n} dfrac1{n}dfrac{1}{sqrt[k]{1+f(n)/n^k}+1/n}\
                      &gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
                      end{array}
                      $



                      Since $f(n)/n^c to 0$
                      for some $c > 0$,
                      $f(n) < an^c$
                      for some $a > 0$
                      so



                      $begin{array}\
                      f(n)/(kn^k)
                      &lt an^c/(kn^k)\
                      &=a/(kn^{k-c})\
                      &lt a/(kn)
                      qquadtext{for } k ge c+1\
                      &lt 1/n
                      qquadtext{for } k > a\
                      end{array}
                      $



                      Therefore,
                      letting
                      $p(n) = max(c+1, a)$,
                      $f(n)/(kn^k) < 1/n$
                      for $k > p(n)$.



                      Therefore



                      $begin{array}\
                      s(n)
                      &gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
                      &gesum_{k=2}^{p(n)} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}+sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
                      &gtsum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+2/n}\
                      &gtsum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{2}\
                      &gt frac12ln(n/p(n))\
                      &to infty
                      qquadtext{since }n/p(n) to infty\
                      end{array}
                      $






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        Consider
                        $s(n)
                        =sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}
                        $

                        where
                        $f(n) ge 0$ and
                        $f(n)/n^{c} to 0$
                        for some $c > 0$.



                        $begin{array}\
                        s(n)
                        &=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
                        &ltsum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k}}\
                        &=sum_{k=2}^{n} dfrac{1}{n}\
                        &to ln(n)-1+gamma\
                        end{array}
                        $



                        Similarly,
                        since
                        $(1+x)^k ge 1+kx,
                        (1+x/k)^k ge 1+x$

                        so
                        $(1+x)^{1/k} le 1+x/k$,



                        $begin{array}\
                        s(n)
                        &=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
                        &=sum_{k=2}^{n} dfrac{1}{nsqrt[k]{1+f(n)/n^k}+1}\
                        &=sum_{k=2}^{n} dfrac1{n}dfrac{1}{sqrt[k]{1+f(n)/n^k}+1/n}\
                        &gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
                        end{array}
                        $



                        Since $f(n)/n^c to 0$
                        for some $c > 0$,
                        $f(n) < an^c$
                        for some $a > 0$
                        so



                        $begin{array}\
                        f(n)/(kn^k)
                        &lt an^c/(kn^k)\
                        &=a/(kn^{k-c})\
                        &lt a/(kn)
                        qquadtext{for } k ge c+1\
                        &lt 1/n
                        qquadtext{for } k > a\
                        end{array}
                        $



                        Therefore,
                        letting
                        $p(n) = max(c+1, a)$,
                        $f(n)/(kn^k) < 1/n$
                        for $k > p(n)$.



                        Therefore



                        $begin{array}\
                        s(n)
                        &gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
                        &gesum_{k=2}^{p(n)} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}+sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
                        &gtsum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+2/n}\
                        &gtsum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{2}\
                        &gt frac12ln(n/p(n))\
                        &to infty
                        qquadtext{since }n/p(n) to infty\
                        end{array}
                        $






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          Consider
                          $s(n)
                          =sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}
                          $

                          where
                          $f(n) ge 0$ and
                          $f(n)/n^{c} to 0$
                          for some $c > 0$.



                          $begin{array}\
                          s(n)
                          &=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
                          &ltsum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k}}\
                          &=sum_{k=2}^{n} dfrac{1}{n}\
                          &to ln(n)-1+gamma\
                          end{array}
                          $



                          Similarly,
                          since
                          $(1+x)^k ge 1+kx,
                          (1+x/k)^k ge 1+x$

                          so
                          $(1+x)^{1/k} le 1+x/k$,



                          $begin{array}\
                          s(n)
                          &=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
                          &=sum_{k=2}^{n} dfrac{1}{nsqrt[k]{1+f(n)/n^k}+1}\
                          &=sum_{k=2}^{n} dfrac1{n}dfrac{1}{sqrt[k]{1+f(n)/n^k}+1/n}\
                          &gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
                          end{array}
                          $



                          Since $f(n)/n^c to 0$
                          for some $c > 0$,
                          $f(n) < an^c$
                          for some $a > 0$
                          so



                          $begin{array}\
                          f(n)/(kn^k)
                          &lt an^c/(kn^k)\
                          &=a/(kn^{k-c})\
                          &lt a/(kn)
                          qquadtext{for } k ge c+1\
                          &lt 1/n
                          qquadtext{for } k > a\
                          end{array}
                          $



                          Therefore,
                          letting
                          $p(n) = max(c+1, a)$,
                          $f(n)/(kn^k) < 1/n$
                          for $k > p(n)$.



                          Therefore



                          $begin{array}\
                          s(n)
                          &gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
                          &gesum_{k=2}^{p(n)} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}+sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
                          &gtsum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+2/n}\
                          &gtsum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{2}\
                          &gt frac12ln(n/p(n))\
                          &to infty
                          qquadtext{since }n/p(n) to infty\
                          end{array}
                          $






                          share|cite|improve this answer









                          $endgroup$



                          Consider
                          $s(n)
                          =sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}
                          $

                          where
                          $f(n) ge 0$ and
                          $f(n)/n^{c} to 0$
                          for some $c > 0$.



                          $begin{array}\
                          s(n)
                          &=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
                          &ltsum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k}}\
                          &=sum_{k=2}^{n} dfrac{1}{n}\
                          &to ln(n)-1+gamma\
                          end{array}
                          $



                          Similarly,
                          since
                          $(1+x)^k ge 1+kx,
                          (1+x/k)^k ge 1+x$

                          so
                          $(1+x)^{1/k} le 1+x/k$,



                          $begin{array}\
                          s(n)
                          &=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
                          &=sum_{k=2}^{n} dfrac{1}{nsqrt[k]{1+f(n)/n^k}+1}\
                          &=sum_{k=2}^{n} dfrac1{n}dfrac{1}{sqrt[k]{1+f(n)/n^k}+1/n}\
                          &gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
                          end{array}
                          $



                          Since $f(n)/n^c to 0$
                          for some $c > 0$,
                          $f(n) < an^c$
                          for some $a > 0$
                          so



                          $begin{array}\
                          f(n)/(kn^k)
                          &lt an^c/(kn^k)\
                          &=a/(kn^{k-c})\
                          &lt a/(kn)
                          qquadtext{for } k ge c+1\
                          &lt 1/n
                          qquadtext{for } k > a\
                          end{array}
                          $



                          Therefore,
                          letting
                          $p(n) = max(c+1, a)$,
                          $f(n)/(kn^k) < 1/n$
                          for $k > p(n)$.



                          Therefore



                          $begin{array}\
                          s(n)
                          &gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
                          &gesum_{k=2}^{p(n)} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}+sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
                          &gtsum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+2/n}\
                          &gtsum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{2}\
                          &gt frac12ln(n/p(n))\
                          &to infty
                          qquadtext{since }n/p(n) to infty\
                          end{array}
                          $







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 30 '18 at 22:16









                          marty cohenmarty cohen

                          73k549128




                          73k549128






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057044%2fevaluate-lim-limits-n-to-infty-sum-limits-k-2n-frac1-sqrtknk%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Human spaceflight

                              Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                              張江高科駅