Evaluate $ limlimits_{n to infty}sumlimits_{k=2}^{n} frac{1}{sqrt[k]{n^k+n+1}+1} $
$begingroup$
$$ lim_{n to infty}sum_{k=2}^{n} frac{1}{sqrt[k]{n^k+n+1}+1} $$
I expect the squeeze theorem helps us solving this but I can't find the inequality.
The result should be $1$.
calculus limits
$endgroup$
add a comment |
$begingroup$
$$ lim_{n to infty}sum_{k=2}^{n} frac{1}{sqrt[k]{n^k+n+1}+1} $$
I expect the squeeze theorem helps us solving this but I can't find the inequality.
The result should be $1$.
calculus limits
$endgroup$
add a comment |
$begingroup$
$$ lim_{n to infty}sum_{k=2}^{n} frac{1}{sqrt[k]{n^k+n+1}+1} $$
I expect the squeeze theorem helps us solving this but I can't find the inequality.
The result should be $1$.
calculus limits
$endgroup$
$$ lim_{n to infty}sum_{k=2}^{n} frac{1}{sqrt[k]{n^k+n+1}+1} $$
I expect the squeeze theorem helps us solving this but I can't find the inequality.
The result should be $1$.
calculus limits
calculus limits
asked Dec 30 '18 at 17:35
SADBOYSSADBOYS
4288
4288
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Try $(n+1)^kgt n^k+n+1gt n^k$
$endgroup$
add a comment |
$begingroup$
Consider
$s(n)
=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}
$
where
$f(n) ge 0$ and
$f(n)/n^{c} to 0$
for some $c > 0$.
$begin{array}\
s(n)
&=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
<sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k}}\
&=sum_{k=2}^{n} dfrac{1}{n}\
&to ln(n)-1+gamma\
end{array}
$
Similarly,
since
$(1+x)^k ge 1+kx,
(1+x/k)^k ge 1+x$
so
$(1+x)^{1/k} le 1+x/k$,
$begin{array}\
s(n)
&=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
&=sum_{k=2}^{n} dfrac{1}{nsqrt[k]{1+f(n)/n^k}+1}\
&=sum_{k=2}^{n} dfrac1{n}dfrac{1}{sqrt[k]{1+f(n)/n^k}+1/n}\
&gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
end{array}
$
Since $f(n)/n^c to 0$
for some $c > 0$,
$f(n) < an^c$
for some $a > 0$
so
$begin{array}\
f(n)/(kn^k)
< an^c/(kn^k)\
&=a/(kn^{k-c})\
< a/(kn)
qquadtext{for } k ge c+1\
< 1/n
qquadtext{for } k > a\
end{array}
$
Therefore,
letting
$p(n) = max(c+1, a)$,
$f(n)/(kn^k) < 1/n$
for $k > p(n)$.
Therefore
$begin{array}\
s(n)
&gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
&gesum_{k=2}^{p(n)} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}+sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
>sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+2/n}\
>sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{2}\
> frac12ln(n/p(n))\
&to infty
qquadtext{since }n/p(n) to infty\
end{array}
$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057044%2fevaluate-lim-limits-n-to-infty-sum-limits-k-2n-frac1-sqrtknk%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Try $(n+1)^kgt n^k+n+1gt n^k$
$endgroup$
add a comment |
$begingroup$
Try $(n+1)^kgt n^k+n+1gt n^k$
$endgroup$
add a comment |
$begingroup$
Try $(n+1)^kgt n^k+n+1gt n^k$
$endgroup$
Try $(n+1)^kgt n^k+n+1gt n^k$
answered Dec 30 '18 at 17:39
Mark BennetMark Bennet
80.8k981179
80.8k981179
add a comment |
add a comment |
$begingroup$
Consider
$s(n)
=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}
$
where
$f(n) ge 0$ and
$f(n)/n^{c} to 0$
for some $c > 0$.
$begin{array}\
s(n)
&=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
<sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k}}\
&=sum_{k=2}^{n} dfrac{1}{n}\
&to ln(n)-1+gamma\
end{array}
$
Similarly,
since
$(1+x)^k ge 1+kx,
(1+x/k)^k ge 1+x$
so
$(1+x)^{1/k} le 1+x/k$,
$begin{array}\
s(n)
&=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
&=sum_{k=2}^{n} dfrac{1}{nsqrt[k]{1+f(n)/n^k}+1}\
&=sum_{k=2}^{n} dfrac1{n}dfrac{1}{sqrt[k]{1+f(n)/n^k}+1/n}\
&gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
end{array}
$
Since $f(n)/n^c to 0$
for some $c > 0$,
$f(n) < an^c$
for some $a > 0$
so
$begin{array}\
f(n)/(kn^k)
< an^c/(kn^k)\
&=a/(kn^{k-c})\
< a/(kn)
qquadtext{for } k ge c+1\
< 1/n
qquadtext{for } k > a\
end{array}
$
Therefore,
letting
$p(n) = max(c+1, a)$,
$f(n)/(kn^k) < 1/n$
for $k > p(n)$.
Therefore
$begin{array}\
s(n)
&gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
&gesum_{k=2}^{p(n)} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}+sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
>sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+2/n}\
>sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{2}\
> frac12ln(n/p(n))\
&to infty
qquadtext{since }n/p(n) to infty\
end{array}
$
$endgroup$
add a comment |
$begingroup$
Consider
$s(n)
=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}
$
where
$f(n) ge 0$ and
$f(n)/n^{c} to 0$
for some $c > 0$.
$begin{array}\
s(n)
&=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
<sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k}}\
&=sum_{k=2}^{n} dfrac{1}{n}\
&to ln(n)-1+gamma\
end{array}
$
Similarly,
since
$(1+x)^k ge 1+kx,
(1+x/k)^k ge 1+x$
so
$(1+x)^{1/k} le 1+x/k$,
$begin{array}\
s(n)
&=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
&=sum_{k=2}^{n} dfrac{1}{nsqrt[k]{1+f(n)/n^k}+1}\
&=sum_{k=2}^{n} dfrac1{n}dfrac{1}{sqrt[k]{1+f(n)/n^k}+1/n}\
&gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
end{array}
$
Since $f(n)/n^c to 0$
for some $c > 0$,
$f(n) < an^c$
for some $a > 0$
so
$begin{array}\
f(n)/(kn^k)
< an^c/(kn^k)\
&=a/(kn^{k-c})\
< a/(kn)
qquadtext{for } k ge c+1\
< 1/n
qquadtext{for } k > a\
end{array}
$
Therefore,
letting
$p(n) = max(c+1, a)$,
$f(n)/(kn^k) < 1/n$
for $k > p(n)$.
Therefore
$begin{array}\
s(n)
&gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
&gesum_{k=2}^{p(n)} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}+sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
>sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+2/n}\
>sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{2}\
> frac12ln(n/p(n))\
&to infty
qquadtext{since }n/p(n) to infty\
end{array}
$
$endgroup$
add a comment |
$begingroup$
Consider
$s(n)
=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}
$
where
$f(n) ge 0$ and
$f(n)/n^{c} to 0$
for some $c > 0$.
$begin{array}\
s(n)
&=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
<sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k}}\
&=sum_{k=2}^{n} dfrac{1}{n}\
&to ln(n)-1+gamma\
end{array}
$
Similarly,
since
$(1+x)^k ge 1+kx,
(1+x/k)^k ge 1+x$
so
$(1+x)^{1/k} le 1+x/k$,
$begin{array}\
s(n)
&=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
&=sum_{k=2}^{n} dfrac{1}{nsqrt[k]{1+f(n)/n^k}+1}\
&=sum_{k=2}^{n} dfrac1{n}dfrac{1}{sqrt[k]{1+f(n)/n^k}+1/n}\
&gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
end{array}
$
Since $f(n)/n^c to 0$
for some $c > 0$,
$f(n) < an^c$
for some $a > 0$
so
$begin{array}\
f(n)/(kn^k)
< an^c/(kn^k)\
&=a/(kn^{k-c})\
< a/(kn)
qquadtext{for } k ge c+1\
< 1/n
qquadtext{for } k > a\
end{array}
$
Therefore,
letting
$p(n) = max(c+1, a)$,
$f(n)/(kn^k) < 1/n$
for $k > p(n)$.
Therefore
$begin{array}\
s(n)
&gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
&gesum_{k=2}^{p(n)} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}+sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
>sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+2/n}\
>sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{2}\
> frac12ln(n/p(n))\
&to infty
qquadtext{since }n/p(n) to infty\
end{array}
$
$endgroup$
Consider
$s(n)
=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}
$
where
$f(n) ge 0$ and
$f(n)/n^{c} to 0$
for some $c > 0$.
$begin{array}\
s(n)
&=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
<sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k}}\
&=sum_{k=2}^{n} dfrac{1}{n}\
&to ln(n)-1+gamma\
end{array}
$
Similarly,
since
$(1+x)^k ge 1+kx,
(1+x/k)^k ge 1+x$
so
$(1+x)^{1/k} le 1+x/k$,
$begin{array}\
s(n)
&=sum_{k=2}^{n} dfrac{1}{sqrt[k]{n^k+f(n)}+1}\
&=sum_{k=2}^{n} dfrac{1}{nsqrt[k]{1+f(n)/n^k}+1}\
&=sum_{k=2}^{n} dfrac1{n}dfrac{1}{sqrt[k]{1+f(n)/n^k}+1/n}\
&gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
end{array}
$
Since $f(n)/n^c to 0$
for some $c > 0$,
$f(n) < an^c$
for some $a > 0$
so
$begin{array}\
f(n)/(kn^k)
< an^c/(kn^k)\
&=a/(kn^{k-c})\
< a/(kn)
qquadtext{for } k ge c+1\
< 1/n
qquadtext{for } k > a\
end{array}
$
Therefore,
letting
$p(n) = max(c+1, a)$,
$f(n)/(kn^k) < 1/n$
for $k > p(n)$.
Therefore
$begin{array}\
s(n)
&gesum_{k=2}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
&gesum_{k=2}^{p(n)} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}+sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+f(n)/(kn^k)+1/n}\
>sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{1+2/n}\
>sum_{k=p(n)}^{n} dfrac1{n}dfrac{1}{2}\
> frac12ln(n/p(n))\
&to infty
qquadtext{since }n/p(n) to infty\
end{array}
$
answered Dec 30 '18 at 22:16
marty cohenmarty cohen
73k549128
73k549128
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057044%2fevaluate-lim-limits-n-to-infty-sum-limits-k-2n-frac1-sqrtknk%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown