Does $|matrix| _{op} geq |row|_2 +|column|_2$?
$begingroup$
let A be a $m times n$ matrix
$$|A| _2 := sup_{x in S^{n-1}, y in S^{m-1}} <Ax,y>$$
let $r$ denotes first row of $A$ ,and $c$ denotes column of $A$.
then
$$|A| _2 geq |r|_2 +|c|_2$$
where $||_2$ denotes Euclidean norm ,
Is that true?
matrices norm
$endgroup$
add a comment |
$begingroup$
let A be a $m times n$ matrix
$$|A| _2 := sup_{x in S^{n-1}, y in S^{m-1}} <Ax,y>$$
let $r$ denotes first row of $A$ ,and $c$ denotes column of $A$.
then
$$|A| _2 geq |r|_2 +|c|_2$$
where $||_2$ denotes Euclidean norm ,
Is that true?
matrices norm
$endgroup$
add a comment |
$begingroup$
let A be a $m times n$ matrix
$$|A| _2 := sup_{x in S^{n-1}, y in S^{m-1}} <Ax,y>$$
let $r$ denotes first row of $A$ ,and $c$ denotes column of $A$.
then
$$|A| _2 geq |r|_2 +|c|_2$$
where $||_2$ denotes Euclidean norm ,
Is that true?
matrices norm
$endgroup$
let A be a $m times n$ matrix
$$|A| _2 := sup_{x in S^{n-1}, y in S^{m-1}} <Ax,y>$$
let $r$ denotes first row of $A$ ,and $c$ denotes column of $A$.
then
$$|A| _2 geq |r|_2 +|c|_2$$
where $||_2$ denotes Euclidean norm ,
Is that true?
matrices norm
matrices norm
edited Dec 30 '18 at 16:44
ShaoyuPei
asked Dec 30 '18 at 16:36
ShaoyuPeiShaoyuPei
1638
1638
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $A$ is the matrix $pmatrix{0 & 0 \ 0 & 1}$, then the first row and first column have 2-norm $0$, while the operator norm is clearly $1$ (attained by $pmatrix{0 \ 1}$).
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056992%2fdoes-matrix-op-geq-row-2-column-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $A$ is the matrix $pmatrix{0 & 0 \ 0 & 1}$, then the first row and first column have 2-norm $0$, while the operator norm is clearly $1$ (attained by $pmatrix{0 \ 1}$).
$endgroup$
add a comment |
$begingroup$
If $A$ is the matrix $pmatrix{0 & 0 \ 0 & 1}$, then the first row and first column have 2-norm $0$, while the operator norm is clearly $1$ (attained by $pmatrix{0 \ 1}$).
$endgroup$
add a comment |
$begingroup$
If $A$ is the matrix $pmatrix{0 & 0 \ 0 & 1}$, then the first row and first column have 2-norm $0$, while the operator norm is clearly $1$ (attained by $pmatrix{0 \ 1}$).
$endgroup$
If $A$ is the matrix $pmatrix{0 & 0 \ 0 & 1}$, then the first row and first column have 2-norm $0$, while the operator norm is clearly $1$ (attained by $pmatrix{0 \ 1}$).
answered Dec 30 '18 at 16:52
preferred_anonpreferred_anon
12.9k11742
12.9k11742
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056992%2fdoes-matrix-op-geq-row-2-column-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown