Why should the position vector be noted as $Rhat{R}$ in spherical polar coordinates?
$begingroup$
Why should the position vector be noted as $Rhat{R}$ in spherical polar coordinates? Now i did the calculation like this: $vec R = R sintheta cosphi hat{i} + R sintheta sinphi hat{j} + R costheta hat{k}$ so now i am manipulating the unit vectors. As :- $$hat{R}= frac{frac{partial vec{R}}{partial R}}{left|frac{partial vec{R}}{partial R}right|}=sintheta cosphi hat{i} + sintheta sinphi hat{j} + costheta hat{k}$$ by doing similiar calculations i found $hat{theta}=costheta cosphi hat{i} + costheta sinphi hat{j} -sinthetahat{k}$. Similarly I found $hat{phi}= cosphi hat{i} + sinphihat{j}$ now position vector can be written as $vec R= [vec R. hat{R}]hat{theta} + [vec R. hat{theta}]hat{theta} + [vec{R},hat{phi}] hat{phi}$. Which gives me $vec{R} = Rhat{R} + Rsintheta hat{phi}$ not $Rhat{R}$ now where i am misunderstanding or miscalculating ?
vectors vector-analysis spherical-coordinates
$endgroup$
add a comment |
$begingroup$
Why should the position vector be noted as $Rhat{R}$ in spherical polar coordinates? Now i did the calculation like this: $vec R = R sintheta cosphi hat{i} + R sintheta sinphi hat{j} + R costheta hat{k}$ so now i am manipulating the unit vectors. As :- $$hat{R}= frac{frac{partial vec{R}}{partial R}}{left|frac{partial vec{R}}{partial R}right|}=sintheta cosphi hat{i} + sintheta sinphi hat{j} + costheta hat{k}$$ by doing similiar calculations i found $hat{theta}=costheta cosphi hat{i} + costheta sinphi hat{j} -sinthetahat{k}$. Similarly I found $hat{phi}= cosphi hat{i} + sinphihat{j}$ now position vector can be written as $vec R= [vec R. hat{R}]hat{theta} + [vec R. hat{theta}]hat{theta} + [vec{R},hat{phi}] hat{phi}$. Which gives me $vec{R} = Rhat{R} + Rsintheta hat{phi}$ not $Rhat{R}$ now where i am misunderstanding or miscalculating ?
vectors vector-analysis spherical-coordinates
$endgroup$
add a comment |
$begingroup$
Why should the position vector be noted as $Rhat{R}$ in spherical polar coordinates? Now i did the calculation like this: $vec R = R sintheta cosphi hat{i} + R sintheta sinphi hat{j} + R costheta hat{k}$ so now i am manipulating the unit vectors. As :- $$hat{R}= frac{frac{partial vec{R}}{partial R}}{left|frac{partial vec{R}}{partial R}right|}=sintheta cosphi hat{i} + sintheta sinphi hat{j} + costheta hat{k}$$ by doing similiar calculations i found $hat{theta}=costheta cosphi hat{i} + costheta sinphi hat{j} -sinthetahat{k}$. Similarly I found $hat{phi}= cosphi hat{i} + sinphihat{j}$ now position vector can be written as $vec R= [vec R. hat{R}]hat{theta} + [vec R. hat{theta}]hat{theta} + [vec{R},hat{phi}] hat{phi}$. Which gives me $vec{R} = Rhat{R} + Rsintheta hat{phi}$ not $Rhat{R}$ now where i am misunderstanding or miscalculating ?
vectors vector-analysis spherical-coordinates
$endgroup$
Why should the position vector be noted as $Rhat{R}$ in spherical polar coordinates? Now i did the calculation like this: $vec R = R sintheta cosphi hat{i} + R sintheta sinphi hat{j} + R costheta hat{k}$ so now i am manipulating the unit vectors. As :- $$hat{R}= frac{frac{partial vec{R}}{partial R}}{left|frac{partial vec{R}}{partial R}right|}=sintheta cosphi hat{i} + sintheta sinphi hat{j} + costheta hat{k}$$ by doing similiar calculations i found $hat{theta}=costheta cosphi hat{i} + costheta sinphi hat{j} -sinthetahat{k}$. Similarly I found $hat{phi}= cosphi hat{i} + sinphihat{j}$ now position vector can be written as $vec R= [vec R. hat{R}]hat{theta} + [vec R. hat{theta}]hat{theta} + [vec{R},hat{phi}] hat{phi}$. Which gives me $vec{R} = Rhat{R} + Rsintheta hat{phi}$ not $Rhat{R}$ now where i am misunderstanding or miscalculating ?
vectors vector-analysis spherical-coordinates
vectors vector-analysis spherical-coordinates
edited Jan 14 at 16:13
mechanodroid
28.7k62548
28.7k62548
asked Jan 13 at 1:19
user187604user187604
285111
285111
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You made a mistake when calculating $hat{phi}$. We have
$$frac{dhat{R}}{dphi} = -Rsinthetasinphi hat{i} + Rsinthetacosphi hat{j}$$
so
$$hatphi = frac{frac{dhat{R}}{dphi}}{left|frac{dhat{R}}{dphi}right|} = frac{ -Rsinthetasinphi hat{i} + Rsinthetacosphi hat{j}}{Rsintheta}= - sinphihat{i} + cosphihat{j}$$
Now we have
$$leftlangle vec{R}, hatphirightrangle = -Rsinthetacosphisinphi + Rsinthetasinphicosphi = 0$$
which gives the correct result $vec{R} = Rhat{R}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071607%2fwhy-should-the-position-vector-be-noted-as-r-hatr-in-spherical-polar-coordin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You made a mistake when calculating $hat{phi}$. We have
$$frac{dhat{R}}{dphi} = -Rsinthetasinphi hat{i} + Rsinthetacosphi hat{j}$$
so
$$hatphi = frac{frac{dhat{R}}{dphi}}{left|frac{dhat{R}}{dphi}right|} = frac{ -Rsinthetasinphi hat{i} + Rsinthetacosphi hat{j}}{Rsintheta}= - sinphihat{i} + cosphihat{j}$$
Now we have
$$leftlangle vec{R}, hatphirightrangle = -Rsinthetacosphisinphi + Rsinthetasinphicosphi = 0$$
which gives the correct result $vec{R} = Rhat{R}$.
$endgroup$
add a comment |
$begingroup$
You made a mistake when calculating $hat{phi}$. We have
$$frac{dhat{R}}{dphi} = -Rsinthetasinphi hat{i} + Rsinthetacosphi hat{j}$$
so
$$hatphi = frac{frac{dhat{R}}{dphi}}{left|frac{dhat{R}}{dphi}right|} = frac{ -Rsinthetasinphi hat{i} + Rsinthetacosphi hat{j}}{Rsintheta}= - sinphihat{i} + cosphihat{j}$$
Now we have
$$leftlangle vec{R}, hatphirightrangle = -Rsinthetacosphisinphi + Rsinthetasinphicosphi = 0$$
which gives the correct result $vec{R} = Rhat{R}$.
$endgroup$
add a comment |
$begingroup$
You made a mistake when calculating $hat{phi}$. We have
$$frac{dhat{R}}{dphi} = -Rsinthetasinphi hat{i} + Rsinthetacosphi hat{j}$$
so
$$hatphi = frac{frac{dhat{R}}{dphi}}{left|frac{dhat{R}}{dphi}right|} = frac{ -Rsinthetasinphi hat{i} + Rsinthetacosphi hat{j}}{Rsintheta}= - sinphihat{i} + cosphihat{j}$$
Now we have
$$leftlangle vec{R}, hatphirightrangle = -Rsinthetacosphisinphi + Rsinthetasinphicosphi = 0$$
which gives the correct result $vec{R} = Rhat{R}$.
$endgroup$
You made a mistake when calculating $hat{phi}$. We have
$$frac{dhat{R}}{dphi} = -Rsinthetasinphi hat{i} + Rsinthetacosphi hat{j}$$
so
$$hatphi = frac{frac{dhat{R}}{dphi}}{left|frac{dhat{R}}{dphi}right|} = frac{ -Rsinthetasinphi hat{i} + Rsinthetacosphi hat{j}}{Rsintheta}= - sinphihat{i} + cosphihat{j}$$
Now we have
$$leftlangle vec{R}, hatphirightrangle = -Rsinthetacosphisinphi + Rsinthetasinphicosphi = 0$$
which gives the correct result $vec{R} = Rhat{R}$.
answered Jan 14 at 16:11
mechanodroidmechanodroid
28.7k62548
28.7k62548
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071607%2fwhy-should-the-position-vector-be-noted-as-r-hatr-in-spherical-polar-coordin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown