How to solve Stieltjes integral $int_0^n f(x) d lfloor x rfloor$?
$begingroup$
I'm trying to solve the following
$$
int_0^n f(x) d lfloor x rfloor
$$
where $lfloor x rfloor$ is the floor function, $f : [0,n] rightarrow mathbb{R}$ is continuous, and $n in mathbb{N}$.
I know $frac{d}{dx} lfloor x rfloor$ itself cannot be secured (i.e. not differentiable). I cannot proceed further.
Can anyone give some hints?
calculus integration stieltjes-integral
$endgroup$
add a comment |
$begingroup$
I'm trying to solve the following
$$
int_0^n f(x) d lfloor x rfloor
$$
where $lfloor x rfloor$ is the floor function, $f : [0,n] rightarrow mathbb{R}$ is continuous, and $n in mathbb{N}$.
I know $frac{d}{dx} lfloor x rfloor$ itself cannot be secured (i.e. not differentiable). I cannot proceed further.
Can anyone give some hints?
calculus integration stieltjes-integral
$endgroup$
1
$begingroup$
The answer is $f(1)+...+f(n-1)$. Just write down Riemann - Steiltjes sums and take the limit.
$endgroup$
– Kavi Rama Murthy
Aug 31 '18 at 8:06
3
$begingroup$
@KaviRamaMurthy Shouldn't it be $$int_0^n,f(x),text{d}lfloor xrfloor = f(1)+f(2)+ldots+f(n),?$$ I think we have $$int_0^n,f(x),text{d}lceil xrceil=f(0)+f(1)+ldots+f(n-1),.$$
$endgroup$
– Batominovski
Aug 31 '18 at 8:08
add a comment |
$begingroup$
I'm trying to solve the following
$$
int_0^n f(x) d lfloor x rfloor
$$
where $lfloor x rfloor$ is the floor function, $f : [0,n] rightarrow mathbb{R}$ is continuous, and $n in mathbb{N}$.
I know $frac{d}{dx} lfloor x rfloor$ itself cannot be secured (i.e. not differentiable). I cannot proceed further.
Can anyone give some hints?
calculus integration stieltjes-integral
$endgroup$
I'm trying to solve the following
$$
int_0^n f(x) d lfloor x rfloor
$$
where $lfloor x rfloor$ is the floor function, $f : [0,n] rightarrow mathbb{R}$ is continuous, and $n in mathbb{N}$.
I know $frac{d}{dx} lfloor x rfloor$ itself cannot be secured (i.e. not differentiable). I cannot proceed further.
Can anyone give some hints?
calculus integration stieltjes-integral
calculus integration stieltjes-integral
asked Aug 31 '18 at 8:01
MoreblueMoreblue
8931217
8931217
1
$begingroup$
The answer is $f(1)+...+f(n-1)$. Just write down Riemann - Steiltjes sums and take the limit.
$endgroup$
– Kavi Rama Murthy
Aug 31 '18 at 8:06
3
$begingroup$
@KaviRamaMurthy Shouldn't it be $$int_0^n,f(x),text{d}lfloor xrfloor = f(1)+f(2)+ldots+f(n),?$$ I think we have $$int_0^n,f(x),text{d}lceil xrceil=f(0)+f(1)+ldots+f(n-1),.$$
$endgroup$
– Batominovski
Aug 31 '18 at 8:08
add a comment |
1
$begingroup$
The answer is $f(1)+...+f(n-1)$. Just write down Riemann - Steiltjes sums and take the limit.
$endgroup$
– Kavi Rama Murthy
Aug 31 '18 at 8:06
3
$begingroup$
@KaviRamaMurthy Shouldn't it be $$int_0^n,f(x),text{d}lfloor xrfloor = f(1)+f(2)+ldots+f(n),?$$ I think we have $$int_0^n,f(x),text{d}lceil xrceil=f(0)+f(1)+ldots+f(n-1),.$$
$endgroup$
– Batominovski
Aug 31 '18 at 8:08
1
1
$begingroup$
The answer is $f(1)+...+f(n-1)$. Just write down Riemann - Steiltjes sums and take the limit.
$endgroup$
– Kavi Rama Murthy
Aug 31 '18 at 8:06
$begingroup$
The answer is $f(1)+...+f(n-1)$. Just write down Riemann - Steiltjes sums and take the limit.
$endgroup$
– Kavi Rama Murthy
Aug 31 '18 at 8:06
3
3
$begingroup$
@KaviRamaMurthy Shouldn't it be $$int_0^n,f(x),text{d}lfloor xrfloor = f(1)+f(2)+ldots+f(n),?$$ I think we have $$int_0^n,f(x),text{d}lceil xrceil=f(0)+f(1)+ldots+f(n-1),.$$
$endgroup$
– Batominovski
Aug 31 '18 at 8:08
$begingroup$
@KaviRamaMurthy Shouldn't it be $$int_0^n,f(x),text{d}lfloor xrfloor = f(1)+f(2)+ldots+f(n),?$$ I think we have $$int_0^n,f(x),text{d}lceil xrceil=f(0)+f(1)+ldots+f(n-1),.$$
$endgroup$
– Batominovski
Aug 31 '18 at 8:08
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that there is a difference between integrating $[0,n]$, $[0,n)$, $(0,n]$ and $(0,n)$:
$$int_{[0,n]}f(x)dlfloor xrfloor =sum_{i=0}^nf(i)$$
$$int_{[0,n)}f(x)dlfloor xrfloor =sum_{i=0}^{n-1}f(i)$$
$$int_{(0,n]}f(x)dlfloor xrfloor =sum_{i=1}^nf(i)$$
$$int_{(0,n)}f(x)dlfloor xrfloor =sum_{i=1}^{n-1}f(i)$$
since the associated measure for the floor-function is
$$mu_{lfloorcdotrfloor}=sum_{k=-infty}^infty delta_k$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2900439%2fhow-to-solve-stieltjes-integral-int-0n-fx-d-lfloor-x-rfloor%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that there is a difference between integrating $[0,n]$, $[0,n)$, $(0,n]$ and $(0,n)$:
$$int_{[0,n]}f(x)dlfloor xrfloor =sum_{i=0}^nf(i)$$
$$int_{[0,n)}f(x)dlfloor xrfloor =sum_{i=0}^{n-1}f(i)$$
$$int_{(0,n]}f(x)dlfloor xrfloor =sum_{i=1}^nf(i)$$
$$int_{(0,n)}f(x)dlfloor xrfloor =sum_{i=1}^{n-1}f(i)$$
since the associated measure for the floor-function is
$$mu_{lfloorcdotrfloor}=sum_{k=-infty}^infty delta_k$$
$endgroup$
add a comment |
$begingroup$
Note that there is a difference between integrating $[0,n]$, $[0,n)$, $(0,n]$ and $(0,n)$:
$$int_{[0,n]}f(x)dlfloor xrfloor =sum_{i=0}^nf(i)$$
$$int_{[0,n)}f(x)dlfloor xrfloor =sum_{i=0}^{n-1}f(i)$$
$$int_{(0,n]}f(x)dlfloor xrfloor =sum_{i=1}^nf(i)$$
$$int_{(0,n)}f(x)dlfloor xrfloor =sum_{i=1}^{n-1}f(i)$$
since the associated measure for the floor-function is
$$mu_{lfloorcdotrfloor}=sum_{k=-infty}^infty delta_k$$
$endgroup$
add a comment |
$begingroup$
Note that there is a difference between integrating $[0,n]$, $[0,n)$, $(0,n]$ and $(0,n)$:
$$int_{[0,n]}f(x)dlfloor xrfloor =sum_{i=0}^nf(i)$$
$$int_{[0,n)}f(x)dlfloor xrfloor =sum_{i=0}^{n-1}f(i)$$
$$int_{(0,n]}f(x)dlfloor xrfloor =sum_{i=1}^nf(i)$$
$$int_{(0,n)}f(x)dlfloor xrfloor =sum_{i=1}^{n-1}f(i)$$
since the associated measure for the floor-function is
$$mu_{lfloorcdotrfloor}=sum_{k=-infty}^infty delta_k$$
$endgroup$
Note that there is a difference between integrating $[0,n]$, $[0,n)$, $(0,n]$ and $(0,n)$:
$$int_{[0,n]}f(x)dlfloor xrfloor =sum_{i=0}^nf(i)$$
$$int_{[0,n)}f(x)dlfloor xrfloor =sum_{i=0}^{n-1}f(i)$$
$$int_{(0,n]}f(x)dlfloor xrfloor =sum_{i=1}^nf(i)$$
$$int_{(0,n)}f(x)dlfloor xrfloor =sum_{i=1}^{n-1}f(i)$$
since the associated measure for the floor-function is
$$mu_{lfloorcdotrfloor}=sum_{k=-infty}^infty delta_k$$
edited Jan 16 at 22:01
answered Jan 12 at 23:20
user408858user408858
482213
482213
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2900439%2fhow-to-solve-stieltjes-integral-int-0n-fx-d-lfloor-x-rfloor%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The answer is $f(1)+...+f(n-1)$. Just write down Riemann - Steiltjes sums and take the limit.
$endgroup$
– Kavi Rama Murthy
Aug 31 '18 at 8:06
3
$begingroup$
@KaviRamaMurthy Shouldn't it be $$int_0^n,f(x),text{d}lfloor xrfloor = f(1)+f(2)+ldots+f(n),?$$ I think we have $$int_0^n,f(x),text{d}lceil xrceil=f(0)+f(1)+ldots+f(n-1),.$$
$endgroup$
– Batominovski
Aug 31 '18 at 8:08