Differentiable maps and be unique linear map
Let $pmb F : U subseteq mathbb{R}^n to mathbb{R}^m$
is differentiable at $pmb a in U$ and let $pmb a $ is an cluster point of $U$ if there exists a linear map $T : mathbb{R}^n to mathbb{R}^m $ satisfying:
$$big(forall epsilon > 0 in mathbb{R} big) big(exists delta_{(epsilon,pmb a)}>0 in mathbb{R}big) $$
$$text{such that} :$$
$$parallel big(pmb x-pmb a big) parallel leq delta text{for every } pmb x in mathbb{R}^n Longrightarrow parallel pmb F(pmb x)- pmb F(pmb a) - T(pmb x -pmb a)parallel leq epsilon parallel pmb x -pmb aparallel$$
The map $T$ is unique, denoted $df_{pmb a} $ and called ‘differential (or ‘derivative’) of $f$ at $pmb a$ . Another notation for this is:
$$pmb F(pmb x)= pmb F(pmb a) + df_{pmb a}(pmb x -pmb a)+pmb r(pmb x)$$
I have two questions :
$1-)$ How prove that $T$ is unique ?
$2-)$ What is function of $pmb r$ ? What is domain and range of function $pmb r$ ?
multivariable-calculus
add a comment |
Let $pmb F : U subseteq mathbb{R}^n to mathbb{R}^m$
is differentiable at $pmb a in U$ and let $pmb a $ is an cluster point of $U$ if there exists a linear map $T : mathbb{R}^n to mathbb{R}^m $ satisfying:
$$big(forall epsilon > 0 in mathbb{R} big) big(exists delta_{(epsilon,pmb a)}>0 in mathbb{R}big) $$
$$text{such that} :$$
$$parallel big(pmb x-pmb a big) parallel leq delta text{for every } pmb x in mathbb{R}^n Longrightarrow parallel pmb F(pmb x)- pmb F(pmb a) - T(pmb x -pmb a)parallel leq epsilon parallel pmb x -pmb aparallel$$
The map $T$ is unique, denoted $df_{pmb a} $ and called ‘differential (or ‘derivative’) of $f$ at $pmb a$ . Another notation for this is:
$$pmb F(pmb x)= pmb F(pmb a) + df_{pmb a}(pmb x -pmb a)+pmb r(pmb x)$$
I have two questions :
$1-)$ How prove that $T$ is unique ?
$2-)$ What is function of $pmb r$ ? What is domain and range of function $pmb r$ ?
multivariable-calculus
add a comment |
Let $pmb F : U subseteq mathbb{R}^n to mathbb{R}^m$
is differentiable at $pmb a in U$ and let $pmb a $ is an cluster point of $U$ if there exists a linear map $T : mathbb{R}^n to mathbb{R}^m $ satisfying:
$$big(forall epsilon > 0 in mathbb{R} big) big(exists delta_{(epsilon,pmb a)}>0 in mathbb{R}big) $$
$$text{such that} :$$
$$parallel big(pmb x-pmb a big) parallel leq delta text{for every } pmb x in mathbb{R}^n Longrightarrow parallel pmb F(pmb x)- pmb F(pmb a) - T(pmb x -pmb a)parallel leq epsilon parallel pmb x -pmb aparallel$$
The map $T$ is unique, denoted $df_{pmb a} $ and called ‘differential (or ‘derivative’) of $f$ at $pmb a$ . Another notation for this is:
$$pmb F(pmb x)= pmb F(pmb a) + df_{pmb a}(pmb x -pmb a)+pmb r(pmb x)$$
I have two questions :
$1-)$ How prove that $T$ is unique ?
$2-)$ What is function of $pmb r$ ? What is domain and range of function $pmb r$ ?
multivariable-calculus
Let $pmb F : U subseteq mathbb{R}^n to mathbb{R}^m$
is differentiable at $pmb a in U$ and let $pmb a $ is an cluster point of $U$ if there exists a linear map $T : mathbb{R}^n to mathbb{R}^m $ satisfying:
$$big(forall epsilon > 0 in mathbb{R} big) big(exists delta_{(epsilon,pmb a)}>0 in mathbb{R}big) $$
$$text{such that} :$$
$$parallel big(pmb x-pmb a big) parallel leq delta text{for every } pmb x in mathbb{R}^n Longrightarrow parallel pmb F(pmb x)- pmb F(pmb a) - T(pmb x -pmb a)parallel leq epsilon parallel pmb x -pmb aparallel$$
The map $T$ is unique, denoted $df_{pmb a} $ and called ‘differential (or ‘derivative’) of $f$ at $pmb a$ . Another notation for this is:
$$pmb F(pmb x)= pmb F(pmb a) + df_{pmb a}(pmb x -pmb a)+pmb r(pmb x)$$
I have two questions :
$1-)$ How prove that $T$ is unique ?
$2-)$ What is function of $pmb r$ ? What is domain and range of function $pmb r$ ?
multivariable-calculus
multivariable-calculus
asked Dec 26 '18 at 22:44
Almot1960
2,503723
2,503723
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Let $T'$ be another differential, $|x-a|leq delta_n$ implies that $|F(x)-F(a)-T(x-a)|leq 1/n|x-a|$ and $|F(x)-F(a)-T'(x-a)|leq 1/n|x-a|$.
We deduce that $|T(x-a)-T'(x-a)|leq |(T(x-a)-(F(x)-F(a))+(F(x)-F(a)-T'(x-a)|leq |F(x)-F(a)-T(x-a)|+|F(x)-F(a)-T'(x-a)|leq 2/n |x-a|$.
Let $b$ such that $|x-b|=1$, we have $|delta_n(x-b)|=delta_n$ impliest that $|T(delta_n(x-b))-T'(delta_n(x-b))|leq {2over n}|delta_n(x-b)|$. This implies that $|(T-T')(x-b)|leq {2over n}$ for every $n>0$, we deduce that $(T-T')(x-b)=0$ and $T-T'=0$. Since for every $aneq x$, $(T-T')({{x-a}over{|x-a|}})=0$.
By definition, $r(x)= F(x)-F(a)-df_a(x-a)$.
Thanks . so function $r$ must be $r :mathbb{R}^n to mathbb{R}^m$ .that's right ?
– Almot1960
Dec 26 '18 at 23:55
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053390%2fdi%25ef%25ac%2580erentiable-maps-and-be-unique-linear-map%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Let $T'$ be another differential, $|x-a|leq delta_n$ implies that $|F(x)-F(a)-T(x-a)|leq 1/n|x-a|$ and $|F(x)-F(a)-T'(x-a)|leq 1/n|x-a|$.
We deduce that $|T(x-a)-T'(x-a)|leq |(T(x-a)-(F(x)-F(a))+(F(x)-F(a)-T'(x-a)|leq |F(x)-F(a)-T(x-a)|+|F(x)-F(a)-T'(x-a)|leq 2/n |x-a|$.
Let $b$ such that $|x-b|=1$, we have $|delta_n(x-b)|=delta_n$ impliest that $|T(delta_n(x-b))-T'(delta_n(x-b))|leq {2over n}|delta_n(x-b)|$. This implies that $|(T-T')(x-b)|leq {2over n}$ for every $n>0$, we deduce that $(T-T')(x-b)=0$ and $T-T'=0$. Since for every $aneq x$, $(T-T')({{x-a}over{|x-a|}})=0$.
By definition, $r(x)= F(x)-F(a)-df_a(x-a)$.
Thanks . so function $r$ must be $r :mathbb{R}^n to mathbb{R}^m$ .that's right ?
– Almot1960
Dec 26 '18 at 23:55
add a comment |
Let $T'$ be another differential, $|x-a|leq delta_n$ implies that $|F(x)-F(a)-T(x-a)|leq 1/n|x-a|$ and $|F(x)-F(a)-T'(x-a)|leq 1/n|x-a|$.
We deduce that $|T(x-a)-T'(x-a)|leq |(T(x-a)-(F(x)-F(a))+(F(x)-F(a)-T'(x-a)|leq |F(x)-F(a)-T(x-a)|+|F(x)-F(a)-T'(x-a)|leq 2/n |x-a|$.
Let $b$ such that $|x-b|=1$, we have $|delta_n(x-b)|=delta_n$ impliest that $|T(delta_n(x-b))-T'(delta_n(x-b))|leq {2over n}|delta_n(x-b)|$. This implies that $|(T-T')(x-b)|leq {2over n}$ for every $n>0$, we deduce that $(T-T')(x-b)=0$ and $T-T'=0$. Since for every $aneq x$, $(T-T')({{x-a}over{|x-a|}})=0$.
By definition, $r(x)= F(x)-F(a)-df_a(x-a)$.
Thanks . so function $r$ must be $r :mathbb{R}^n to mathbb{R}^m$ .that's right ?
– Almot1960
Dec 26 '18 at 23:55
add a comment |
Let $T'$ be another differential, $|x-a|leq delta_n$ implies that $|F(x)-F(a)-T(x-a)|leq 1/n|x-a|$ and $|F(x)-F(a)-T'(x-a)|leq 1/n|x-a|$.
We deduce that $|T(x-a)-T'(x-a)|leq |(T(x-a)-(F(x)-F(a))+(F(x)-F(a)-T'(x-a)|leq |F(x)-F(a)-T(x-a)|+|F(x)-F(a)-T'(x-a)|leq 2/n |x-a|$.
Let $b$ such that $|x-b|=1$, we have $|delta_n(x-b)|=delta_n$ impliest that $|T(delta_n(x-b))-T'(delta_n(x-b))|leq {2over n}|delta_n(x-b)|$. This implies that $|(T-T')(x-b)|leq {2over n}$ for every $n>0$, we deduce that $(T-T')(x-b)=0$ and $T-T'=0$. Since for every $aneq x$, $(T-T')({{x-a}over{|x-a|}})=0$.
By definition, $r(x)= F(x)-F(a)-df_a(x-a)$.
Let $T'$ be another differential, $|x-a|leq delta_n$ implies that $|F(x)-F(a)-T(x-a)|leq 1/n|x-a|$ and $|F(x)-F(a)-T'(x-a)|leq 1/n|x-a|$.
We deduce that $|T(x-a)-T'(x-a)|leq |(T(x-a)-(F(x)-F(a))+(F(x)-F(a)-T'(x-a)|leq |F(x)-F(a)-T(x-a)|+|F(x)-F(a)-T'(x-a)|leq 2/n |x-a|$.
Let $b$ such that $|x-b|=1$, we have $|delta_n(x-b)|=delta_n$ impliest that $|T(delta_n(x-b))-T'(delta_n(x-b))|leq {2over n}|delta_n(x-b)|$. This implies that $|(T-T')(x-b)|leq {2over n}$ for every $n>0$, we deduce that $(T-T')(x-b)=0$ and $T-T'=0$. Since for every $aneq x$, $(T-T')({{x-a}over{|x-a|}})=0$.
By definition, $r(x)= F(x)-F(a)-df_a(x-a)$.
answered Dec 26 '18 at 23:09
Tsemo Aristide
55.7k11444
55.7k11444
Thanks . so function $r$ must be $r :mathbb{R}^n to mathbb{R}^m$ .that's right ?
– Almot1960
Dec 26 '18 at 23:55
add a comment |
Thanks . so function $r$ must be $r :mathbb{R}^n to mathbb{R}^m$ .that's right ?
– Almot1960
Dec 26 '18 at 23:55
Thanks . so function $r$ must be $r :mathbb{R}^n to mathbb{R}^m$ .that's right ?
– Almot1960
Dec 26 '18 at 23:55
Thanks . so function $r$ must be $r :mathbb{R}^n to mathbb{R}^m$ .that's right ?
– Almot1960
Dec 26 '18 at 23:55
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053390%2fdi%25ef%25ac%2580erentiable-maps-and-be-unique-linear-map%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown