Differentiable maps and be unique linear map












0















Let $pmb F : U subseteq mathbb{R}^n to mathbb{R}^m$
is differentiable at $pmb a in U$ and let $pmb a $ is an cluster point of $U$ if there exists a linear map $T : mathbb{R}^n to mathbb{R}^m $ satisfying:
$$big(forall epsilon > 0 in mathbb{R} big) big(exists delta_{(epsilon,pmb a)}>0 in mathbb{R}big) $$
$$text{such that} :$$
$$parallel big(pmb x-pmb a big) parallel leq delta text{for every } pmb x in mathbb{R}^n Longrightarrow parallel pmb F(pmb x)- pmb F(pmb a) - T(pmb x -pmb a)parallel leq epsilon parallel pmb x -pmb aparallel$$



The map $T$ is unique, denoted $df_{pmb a} $ and called ‘differential (or ‘derivative’) of $f$ at $pmb a$ . Another notation for this is:
$$pmb F(pmb x)= pmb F(pmb a) + df_{pmb a}(pmb x -pmb a)+pmb r(pmb x)$$




I have two questions :



$1-)$ How prove that $T$ is unique ?



$2-)$ What is function of $pmb r$ ? What is domain and range of function $pmb r$ ?










share|cite|improve this question



























    0















    Let $pmb F : U subseteq mathbb{R}^n to mathbb{R}^m$
    is differentiable at $pmb a in U$ and let $pmb a $ is an cluster point of $U$ if there exists a linear map $T : mathbb{R}^n to mathbb{R}^m $ satisfying:
    $$big(forall epsilon > 0 in mathbb{R} big) big(exists delta_{(epsilon,pmb a)}>0 in mathbb{R}big) $$
    $$text{such that} :$$
    $$parallel big(pmb x-pmb a big) parallel leq delta text{for every } pmb x in mathbb{R}^n Longrightarrow parallel pmb F(pmb x)- pmb F(pmb a) - T(pmb x -pmb a)parallel leq epsilon parallel pmb x -pmb aparallel$$



    The map $T$ is unique, denoted $df_{pmb a} $ and called ‘differential (or ‘derivative’) of $f$ at $pmb a$ . Another notation for this is:
    $$pmb F(pmb x)= pmb F(pmb a) + df_{pmb a}(pmb x -pmb a)+pmb r(pmb x)$$




    I have two questions :



    $1-)$ How prove that $T$ is unique ?



    $2-)$ What is function of $pmb r$ ? What is domain and range of function $pmb r$ ?










    share|cite|improve this question

























      0












      0








      0


      1






      Let $pmb F : U subseteq mathbb{R}^n to mathbb{R}^m$
      is differentiable at $pmb a in U$ and let $pmb a $ is an cluster point of $U$ if there exists a linear map $T : mathbb{R}^n to mathbb{R}^m $ satisfying:
      $$big(forall epsilon > 0 in mathbb{R} big) big(exists delta_{(epsilon,pmb a)}>0 in mathbb{R}big) $$
      $$text{such that} :$$
      $$parallel big(pmb x-pmb a big) parallel leq delta text{for every } pmb x in mathbb{R}^n Longrightarrow parallel pmb F(pmb x)- pmb F(pmb a) - T(pmb x -pmb a)parallel leq epsilon parallel pmb x -pmb aparallel$$



      The map $T$ is unique, denoted $df_{pmb a} $ and called ‘differential (or ‘derivative’) of $f$ at $pmb a$ . Another notation for this is:
      $$pmb F(pmb x)= pmb F(pmb a) + df_{pmb a}(pmb x -pmb a)+pmb r(pmb x)$$




      I have two questions :



      $1-)$ How prove that $T$ is unique ?



      $2-)$ What is function of $pmb r$ ? What is domain and range of function $pmb r$ ?










      share|cite|improve this question














      Let $pmb F : U subseteq mathbb{R}^n to mathbb{R}^m$
      is differentiable at $pmb a in U$ and let $pmb a $ is an cluster point of $U$ if there exists a linear map $T : mathbb{R}^n to mathbb{R}^m $ satisfying:
      $$big(forall epsilon > 0 in mathbb{R} big) big(exists delta_{(epsilon,pmb a)}>0 in mathbb{R}big) $$
      $$text{such that} :$$
      $$parallel big(pmb x-pmb a big) parallel leq delta text{for every } pmb x in mathbb{R}^n Longrightarrow parallel pmb F(pmb x)- pmb F(pmb a) - T(pmb x -pmb a)parallel leq epsilon parallel pmb x -pmb aparallel$$



      The map $T$ is unique, denoted $df_{pmb a} $ and called ‘differential (or ‘derivative’) of $f$ at $pmb a$ . Another notation for this is:
      $$pmb F(pmb x)= pmb F(pmb a) + df_{pmb a}(pmb x -pmb a)+pmb r(pmb x)$$




      I have two questions :



      $1-)$ How prove that $T$ is unique ?



      $2-)$ What is function of $pmb r$ ? What is domain and range of function $pmb r$ ?







      multivariable-calculus






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 26 '18 at 22:44









      Almot1960

      2,503723




      2,503723






















          1 Answer
          1






          active

          oldest

          votes


















          1














          Let $T'$ be another differential, $|x-a|leq delta_n$ implies that $|F(x)-F(a)-T(x-a)|leq 1/n|x-a|$ and $|F(x)-F(a)-T'(x-a)|leq 1/n|x-a|$.



          We deduce that $|T(x-a)-T'(x-a)|leq |(T(x-a)-(F(x)-F(a))+(F(x)-F(a)-T'(x-a)|leq |F(x)-F(a)-T(x-a)|+|F(x)-F(a)-T'(x-a)|leq 2/n |x-a|$.



          Let $b$ such that $|x-b|=1$, we have $|delta_n(x-b)|=delta_n$ impliest that $|T(delta_n(x-b))-T'(delta_n(x-b))|leq {2over n}|delta_n(x-b)|$. This implies that $|(T-T')(x-b)|leq {2over n}$ for every $n>0$, we deduce that $(T-T')(x-b)=0$ and $T-T'=0$. Since for every $aneq x$, $(T-T')({{x-a}over{|x-a|}})=0$.



          By definition, $r(x)= F(x)-F(a)-df_a(x-a)$.






          share|cite|improve this answer





















          • Thanks . so function $r$ must be $r :mathbb{R}^n to mathbb{R}^m$ .that's right ?
            – Almot1960
            Dec 26 '18 at 23:55











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053390%2fdi%25ef%25ac%2580erentiable-maps-and-be-unique-linear-map%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1














          Let $T'$ be another differential, $|x-a|leq delta_n$ implies that $|F(x)-F(a)-T(x-a)|leq 1/n|x-a|$ and $|F(x)-F(a)-T'(x-a)|leq 1/n|x-a|$.



          We deduce that $|T(x-a)-T'(x-a)|leq |(T(x-a)-(F(x)-F(a))+(F(x)-F(a)-T'(x-a)|leq |F(x)-F(a)-T(x-a)|+|F(x)-F(a)-T'(x-a)|leq 2/n |x-a|$.



          Let $b$ such that $|x-b|=1$, we have $|delta_n(x-b)|=delta_n$ impliest that $|T(delta_n(x-b))-T'(delta_n(x-b))|leq {2over n}|delta_n(x-b)|$. This implies that $|(T-T')(x-b)|leq {2over n}$ for every $n>0$, we deduce that $(T-T')(x-b)=0$ and $T-T'=0$. Since for every $aneq x$, $(T-T')({{x-a}over{|x-a|}})=0$.



          By definition, $r(x)= F(x)-F(a)-df_a(x-a)$.






          share|cite|improve this answer





















          • Thanks . so function $r$ must be $r :mathbb{R}^n to mathbb{R}^m$ .that's right ?
            – Almot1960
            Dec 26 '18 at 23:55
















          1














          Let $T'$ be another differential, $|x-a|leq delta_n$ implies that $|F(x)-F(a)-T(x-a)|leq 1/n|x-a|$ and $|F(x)-F(a)-T'(x-a)|leq 1/n|x-a|$.



          We deduce that $|T(x-a)-T'(x-a)|leq |(T(x-a)-(F(x)-F(a))+(F(x)-F(a)-T'(x-a)|leq |F(x)-F(a)-T(x-a)|+|F(x)-F(a)-T'(x-a)|leq 2/n |x-a|$.



          Let $b$ such that $|x-b|=1$, we have $|delta_n(x-b)|=delta_n$ impliest that $|T(delta_n(x-b))-T'(delta_n(x-b))|leq {2over n}|delta_n(x-b)|$. This implies that $|(T-T')(x-b)|leq {2over n}$ for every $n>0$, we deduce that $(T-T')(x-b)=0$ and $T-T'=0$. Since for every $aneq x$, $(T-T')({{x-a}over{|x-a|}})=0$.



          By definition, $r(x)= F(x)-F(a)-df_a(x-a)$.






          share|cite|improve this answer





















          • Thanks . so function $r$ must be $r :mathbb{R}^n to mathbb{R}^m$ .that's right ?
            – Almot1960
            Dec 26 '18 at 23:55














          1












          1








          1






          Let $T'$ be another differential, $|x-a|leq delta_n$ implies that $|F(x)-F(a)-T(x-a)|leq 1/n|x-a|$ and $|F(x)-F(a)-T'(x-a)|leq 1/n|x-a|$.



          We deduce that $|T(x-a)-T'(x-a)|leq |(T(x-a)-(F(x)-F(a))+(F(x)-F(a)-T'(x-a)|leq |F(x)-F(a)-T(x-a)|+|F(x)-F(a)-T'(x-a)|leq 2/n |x-a|$.



          Let $b$ such that $|x-b|=1$, we have $|delta_n(x-b)|=delta_n$ impliest that $|T(delta_n(x-b))-T'(delta_n(x-b))|leq {2over n}|delta_n(x-b)|$. This implies that $|(T-T')(x-b)|leq {2over n}$ for every $n>0$, we deduce that $(T-T')(x-b)=0$ and $T-T'=0$. Since for every $aneq x$, $(T-T')({{x-a}over{|x-a|}})=0$.



          By definition, $r(x)= F(x)-F(a)-df_a(x-a)$.






          share|cite|improve this answer












          Let $T'$ be another differential, $|x-a|leq delta_n$ implies that $|F(x)-F(a)-T(x-a)|leq 1/n|x-a|$ and $|F(x)-F(a)-T'(x-a)|leq 1/n|x-a|$.



          We deduce that $|T(x-a)-T'(x-a)|leq |(T(x-a)-(F(x)-F(a))+(F(x)-F(a)-T'(x-a)|leq |F(x)-F(a)-T(x-a)|+|F(x)-F(a)-T'(x-a)|leq 2/n |x-a|$.



          Let $b$ such that $|x-b|=1$, we have $|delta_n(x-b)|=delta_n$ impliest that $|T(delta_n(x-b))-T'(delta_n(x-b))|leq {2over n}|delta_n(x-b)|$. This implies that $|(T-T')(x-b)|leq {2over n}$ for every $n>0$, we deduce that $(T-T')(x-b)=0$ and $T-T'=0$. Since for every $aneq x$, $(T-T')({{x-a}over{|x-a|}})=0$.



          By definition, $r(x)= F(x)-F(a)-df_a(x-a)$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 26 '18 at 23:09









          Tsemo Aristide

          55.7k11444




          55.7k11444












          • Thanks . so function $r$ must be $r :mathbb{R}^n to mathbb{R}^m$ .that's right ?
            – Almot1960
            Dec 26 '18 at 23:55


















          • Thanks . so function $r$ must be $r :mathbb{R}^n to mathbb{R}^m$ .that's right ?
            – Almot1960
            Dec 26 '18 at 23:55
















          Thanks . so function $r$ must be $r :mathbb{R}^n to mathbb{R}^m$ .that's right ?
          – Almot1960
          Dec 26 '18 at 23:55




          Thanks . so function $r$ must be $r :mathbb{R}^n to mathbb{R}^m$ .that's right ?
          – Almot1960
          Dec 26 '18 at 23:55


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053390%2fdi%25ef%25ac%2580erentiable-maps-and-be-unique-linear-map%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Human spaceflight

          Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

          張江高科駅