sum of squares of digits of number n












1












$begingroup$


I have to found a limit of $B/n$, where $B$ is a sum of squares of digits of number $n$. I was thinking about using Cesaro-Stolz theorem, but I'm stuck with the $B$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hint: $Bleq9^2log_{10}(n)$, more accurately $Bleq9^2(lfloorlog_{10}(n)rfloor+1)$
    $endgroup$
    – SmileyCraft
    Jan 10 at 19:45












  • $begingroup$
    Wow, I didn't know that fact. Thank you!
    $endgroup$
    – MilO
    Jan 10 at 19:46








  • 1




    $begingroup$
    You should try to justify it though
    $endgroup$
    – SmileyCraft
    Jan 10 at 19:47










  • $begingroup$
    Hint: suppose $n = underbrace{999cdots 999}_n$.
    $endgroup$
    – David G. Stork
    Jan 10 at 19:49


















1












$begingroup$


I have to found a limit of $B/n$, where $B$ is a sum of squares of digits of number $n$. I was thinking about using Cesaro-Stolz theorem, but I'm stuck with the $B$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hint: $Bleq9^2log_{10}(n)$, more accurately $Bleq9^2(lfloorlog_{10}(n)rfloor+1)$
    $endgroup$
    – SmileyCraft
    Jan 10 at 19:45












  • $begingroup$
    Wow, I didn't know that fact. Thank you!
    $endgroup$
    – MilO
    Jan 10 at 19:46








  • 1




    $begingroup$
    You should try to justify it though
    $endgroup$
    – SmileyCraft
    Jan 10 at 19:47










  • $begingroup$
    Hint: suppose $n = underbrace{999cdots 999}_n$.
    $endgroup$
    – David G. Stork
    Jan 10 at 19:49
















1












1








1





$begingroup$


I have to found a limit of $B/n$, where $B$ is a sum of squares of digits of number $n$. I was thinking about using Cesaro-Stolz theorem, but I'm stuck with the $B$.










share|cite|improve this question











$endgroup$




I have to found a limit of $B/n$, where $B$ is a sum of squares of digits of number $n$. I was thinking about using Cesaro-Stolz theorem, but I'm stuck with the $B$.







analysis elementary-number-theory limits-without-lhopital






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 10 at 20:03









David G. Stork

11k41432




11k41432










asked Jan 10 at 19:44









MilOMilO

83




83








  • 1




    $begingroup$
    Hint: $Bleq9^2log_{10}(n)$, more accurately $Bleq9^2(lfloorlog_{10}(n)rfloor+1)$
    $endgroup$
    – SmileyCraft
    Jan 10 at 19:45












  • $begingroup$
    Wow, I didn't know that fact. Thank you!
    $endgroup$
    – MilO
    Jan 10 at 19:46








  • 1




    $begingroup$
    You should try to justify it though
    $endgroup$
    – SmileyCraft
    Jan 10 at 19:47










  • $begingroup$
    Hint: suppose $n = underbrace{999cdots 999}_n$.
    $endgroup$
    – David G. Stork
    Jan 10 at 19:49
















  • 1




    $begingroup$
    Hint: $Bleq9^2log_{10}(n)$, more accurately $Bleq9^2(lfloorlog_{10}(n)rfloor+1)$
    $endgroup$
    – SmileyCraft
    Jan 10 at 19:45












  • $begingroup$
    Wow, I didn't know that fact. Thank you!
    $endgroup$
    – MilO
    Jan 10 at 19:46








  • 1




    $begingroup$
    You should try to justify it though
    $endgroup$
    – SmileyCraft
    Jan 10 at 19:47










  • $begingroup$
    Hint: suppose $n = underbrace{999cdots 999}_n$.
    $endgroup$
    – David G. Stork
    Jan 10 at 19:49










1




1




$begingroup$
Hint: $Bleq9^2log_{10}(n)$, more accurately $Bleq9^2(lfloorlog_{10}(n)rfloor+1)$
$endgroup$
– SmileyCraft
Jan 10 at 19:45






$begingroup$
Hint: $Bleq9^2log_{10}(n)$, more accurately $Bleq9^2(lfloorlog_{10}(n)rfloor+1)$
$endgroup$
– SmileyCraft
Jan 10 at 19:45














$begingroup$
Wow, I didn't know that fact. Thank you!
$endgroup$
– MilO
Jan 10 at 19:46






$begingroup$
Wow, I didn't know that fact. Thank you!
$endgroup$
– MilO
Jan 10 at 19:46






1




1




$begingroup$
You should try to justify it though
$endgroup$
– SmileyCraft
Jan 10 at 19:47




$begingroup$
You should try to justify it though
$endgroup$
– SmileyCraft
Jan 10 at 19:47












$begingroup$
Hint: suppose $n = underbrace{999cdots 999}_n$.
$endgroup$
– David G. Stork
Jan 10 at 19:49






$begingroup$
Hint: suppose $n = underbrace{999cdots 999}_n$.
$endgroup$
– David G. Stork
Jan 10 at 19:49












2 Answers
2






active

oldest

votes


















0












$begingroup$

Let $$n=overline{a_k a_{k-1}cdots a_0}=10^ka_k+cdots +a_0$$when $a_kne 0$. Therefore$${B_nover n}={a_0^2+cdots +a_k^2over 10^ka_k+cdots +a_0}le {81(k+1)over 10^k}$$and we obtain$$0le lim_{nto infty}{B_nover n}=lim_{kto infty}{a_0^2+cdots +a_k^2over 10^ka_k+cdots +a_0}le lim_{kto infty}{81(k+1)over 10^k}=0$$therefore$$lim_{nto infty}{B_nover n}=0$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Consider a number $n$
    in base $b$
    with $d$ digits,
    the high order digit
    being non-zero.



    Then
    $b^{d-1} le n < b^d$
    (so that
    $d-1 le log_b(n) < d$)
    and
    $B_m(n)$,
    the sum of the $m$-th powers of the digits of $n$
    in base $b$,
    satisfies



    $begin{array}\
    B_m(n)
    &le d(b-1)^m\
    &lt (log_b(n)+1)(b-1)^m\
    text{so}\
    dfrac{B_m(n)}{n}
    &lt dfrac{(log_b(n)+1)(b-1)^m}{n}\
    &= dfrac{(ln(n)+ln(b))(b-1)^m}{nln(b)}\
    &lt dfrac{(2sqrt{n}+ln(b))(b-1)^m}{nln(b)}
    qquadtext{since }ln(n) < 2sqrt{n}\
    &lt dfrac{3sqrt{n}(b-1)^m}{nln(b)}
    qquadtext{for } n > (ln(b))^2\
    &lt dfrac{3(b-1)^m}{sqrt{n}ln(b)}\
    &lt epsilon
    qquadtext{for } n > left(dfrac{3(b-1)^m}{epsilonln(b)}right)^2\
    &to 0\
    end{array}
    $



    This requires
    $n > dfrac{c(b, m)}{epsilon^2}
    $

    where $c(b, m)$
    is an expression that depends on
    $b$ and $m$.



    For any $a > 0$,
    this can be improved to
    $n > dfrac{c(b, m, a)}{epsilon^{1+a}}
    $

    where $c(b, m)$
    is a constant that depends on
    $b$, $m$, and $a$.



    I don't know if
    this can be improved to
    $n > dfrac{c_0(b, m)}{epsilon}
    $

    for some $c_0(b, m)$.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069092%2fsum-of-squares-of-digits-of-number-n%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      Let $$n=overline{a_k a_{k-1}cdots a_0}=10^ka_k+cdots +a_0$$when $a_kne 0$. Therefore$${B_nover n}={a_0^2+cdots +a_k^2over 10^ka_k+cdots +a_0}le {81(k+1)over 10^k}$$and we obtain$$0le lim_{nto infty}{B_nover n}=lim_{kto infty}{a_0^2+cdots +a_k^2over 10^ka_k+cdots +a_0}le lim_{kto infty}{81(k+1)over 10^k}=0$$therefore$$lim_{nto infty}{B_nover n}=0$$






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        Let $$n=overline{a_k a_{k-1}cdots a_0}=10^ka_k+cdots +a_0$$when $a_kne 0$. Therefore$${B_nover n}={a_0^2+cdots +a_k^2over 10^ka_k+cdots +a_0}le {81(k+1)over 10^k}$$and we obtain$$0le lim_{nto infty}{B_nover n}=lim_{kto infty}{a_0^2+cdots +a_k^2over 10^ka_k+cdots +a_0}le lim_{kto infty}{81(k+1)over 10^k}=0$$therefore$$lim_{nto infty}{B_nover n}=0$$






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          Let $$n=overline{a_k a_{k-1}cdots a_0}=10^ka_k+cdots +a_0$$when $a_kne 0$. Therefore$${B_nover n}={a_0^2+cdots +a_k^2over 10^ka_k+cdots +a_0}le {81(k+1)over 10^k}$$and we obtain$$0le lim_{nto infty}{B_nover n}=lim_{kto infty}{a_0^2+cdots +a_k^2over 10^ka_k+cdots +a_0}le lim_{kto infty}{81(k+1)over 10^k}=0$$therefore$$lim_{nto infty}{B_nover n}=0$$






          share|cite|improve this answer









          $endgroup$



          Let $$n=overline{a_k a_{k-1}cdots a_0}=10^ka_k+cdots +a_0$$when $a_kne 0$. Therefore$${B_nover n}={a_0^2+cdots +a_k^2over 10^ka_k+cdots +a_0}le {81(k+1)over 10^k}$$and we obtain$$0le lim_{nto infty}{B_nover n}=lim_{kto infty}{a_0^2+cdots +a_k^2over 10^ka_k+cdots +a_0}le lim_{kto infty}{81(k+1)over 10^k}=0$$therefore$$lim_{nto infty}{B_nover n}=0$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 10 at 19:56









          Mostafa AyazMostafa Ayaz

          15.7k3939




          15.7k3939























              1












              $begingroup$

              Consider a number $n$
              in base $b$
              with $d$ digits,
              the high order digit
              being non-zero.



              Then
              $b^{d-1} le n < b^d$
              (so that
              $d-1 le log_b(n) < d$)
              and
              $B_m(n)$,
              the sum of the $m$-th powers of the digits of $n$
              in base $b$,
              satisfies



              $begin{array}\
              B_m(n)
              &le d(b-1)^m\
              &lt (log_b(n)+1)(b-1)^m\
              text{so}\
              dfrac{B_m(n)}{n}
              &lt dfrac{(log_b(n)+1)(b-1)^m}{n}\
              &= dfrac{(ln(n)+ln(b))(b-1)^m}{nln(b)}\
              &lt dfrac{(2sqrt{n}+ln(b))(b-1)^m}{nln(b)}
              qquadtext{since }ln(n) < 2sqrt{n}\
              &lt dfrac{3sqrt{n}(b-1)^m}{nln(b)}
              qquadtext{for } n > (ln(b))^2\
              &lt dfrac{3(b-1)^m}{sqrt{n}ln(b)}\
              &lt epsilon
              qquadtext{for } n > left(dfrac{3(b-1)^m}{epsilonln(b)}right)^2\
              &to 0\
              end{array}
              $



              This requires
              $n > dfrac{c(b, m)}{epsilon^2}
              $

              where $c(b, m)$
              is an expression that depends on
              $b$ and $m$.



              For any $a > 0$,
              this can be improved to
              $n > dfrac{c(b, m, a)}{epsilon^{1+a}}
              $

              where $c(b, m)$
              is a constant that depends on
              $b$, $m$, and $a$.



              I don't know if
              this can be improved to
              $n > dfrac{c_0(b, m)}{epsilon}
              $

              for some $c_0(b, m)$.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Consider a number $n$
                in base $b$
                with $d$ digits,
                the high order digit
                being non-zero.



                Then
                $b^{d-1} le n < b^d$
                (so that
                $d-1 le log_b(n) < d$)
                and
                $B_m(n)$,
                the sum of the $m$-th powers of the digits of $n$
                in base $b$,
                satisfies



                $begin{array}\
                B_m(n)
                &le d(b-1)^m\
                &lt (log_b(n)+1)(b-1)^m\
                text{so}\
                dfrac{B_m(n)}{n}
                &lt dfrac{(log_b(n)+1)(b-1)^m}{n}\
                &= dfrac{(ln(n)+ln(b))(b-1)^m}{nln(b)}\
                &lt dfrac{(2sqrt{n}+ln(b))(b-1)^m}{nln(b)}
                qquadtext{since }ln(n) < 2sqrt{n}\
                &lt dfrac{3sqrt{n}(b-1)^m}{nln(b)}
                qquadtext{for } n > (ln(b))^2\
                &lt dfrac{3(b-1)^m}{sqrt{n}ln(b)}\
                &lt epsilon
                qquadtext{for } n > left(dfrac{3(b-1)^m}{epsilonln(b)}right)^2\
                &to 0\
                end{array}
                $



                This requires
                $n > dfrac{c(b, m)}{epsilon^2}
                $

                where $c(b, m)$
                is an expression that depends on
                $b$ and $m$.



                For any $a > 0$,
                this can be improved to
                $n > dfrac{c(b, m, a)}{epsilon^{1+a}}
                $

                where $c(b, m)$
                is a constant that depends on
                $b$, $m$, and $a$.



                I don't know if
                this can be improved to
                $n > dfrac{c_0(b, m)}{epsilon}
                $

                for some $c_0(b, m)$.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Consider a number $n$
                  in base $b$
                  with $d$ digits,
                  the high order digit
                  being non-zero.



                  Then
                  $b^{d-1} le n < b^d$
                  (so that
                  $d-1 le log_b(n) < d$)
                  and
                  $B_m(n)$,
                  the sum of the $m$-th powers of the digits of $n$
                  in base $b$,
                  satisfies



                  $begin{array}\
                  B_m(n)
                  &le d(b-1)^m\
                  &lt (log_b(n)+1)(b-1)^m\
                  text{so}\
                  dfrac{B_m(n)}{n}
                  &lt dfrac{(log_b(n)+1)(b-1)^m}{n}\
                  &= dfrac{(ln(n)+ln(b))(b-1)^m}{nln(b)}\
                  &lt dfrac{(2sqrt{n}+ln(b))(b-1)^m}{nln(b)}
                  qquadtext{since }ln(n) < 2sqrt{n}\
                  &lt dfrac{3sqrt{n}(b-1)^m}{nln(b)}
                  qquadtext{for } n > (ln(b))^2\
                  &lt dfrac{3(b-1)^m}{sqrt{n}ln(b)}\
                  &lt epsilon
                  qquadtext{for } n > left(dfrac{3(b-1)^m}{epsilonln(b)}right)^2\
                  &to 0\
                  end{array}
                  $



                  This requires
                  $n > dfrac{c(b, m)}{epsilon^2}
                  $

                  where $c(b, m)$
                  is an expression that depends on
                  $b$ and $m$.



                  For any $a > 0$,
                  this can be improved to
                  $n > dfrac{c(b, m, a)}{epsilon^{1+a}}
                  $

                  where $c(b, m)$
                  is a constant that depends on
                  $b$, $m$, and $a$.



                  I don't know if
                  this can be improved to
                  $n > dfrac{c_0(b, m)}{epsilon}
                  $

                  for some $c_0(b, m)$.






                  share|cite|improve this answer









                  $endgroup$



                  Consider a number $n$
                  in base $b$
                  with $d$ digits,
                  the high order digit
                  being non-zero.



                  Then
                  $b^{d-1} le n < b^d$
                  (so that
                  $d-1 le log_b(n) < d$)
                  and
                  $B_m(n)$,
                  the sum of the $m$-th powers of the digits of $n$
                  in base $b$,
                  satisfies



                  $begin{array}\
                  B_m(n)
                  &le d(b-1)^m\
                  &lt (log_b(n)+1)(b-1)^m\
                  text{so}\
                  dfrac{B_m(n)}{n}
                  &lt dfrac{(log_b(n)+1)(b-1)^m}{n}\
                  &= dfrac{(ln(n)+ln(b))(b-1)^m}{nln(b)}\
                  &lt dfrac{(2sqrt{n}+ln(b))(b-1)^m}{nln(b)}
                  qquadtext{since }ln(n) < 2sqrt{n}\
                  &lt dfrac{3sqrt{n}(b-1)^m}{nln(b)}
                  qquadtext{for } n > (ln(b))^2\
                  &lt dfrac{3(b-1)^m}{sqrt{n}ln(b)}\
                  &lt epsilon
                  qquadtext{for } n > left(dfrac{3(b-1)^m}{epsilonln(b)}right)^2\
                  &to 0\
                  end{array}
                  $



                  This requires
                  $n > dfrac{c(b, m)}{epsilon^2}
                  $

                  where $c(b, m)$
                  is an expression that depends on
                  $b$ and $m$.



                  For any $a > 0$,
                  this can be improved to
                  $n > dfrac{c(b, m, a)}{epsilon^{1+a}}
                  $

                  where $c(b, m)$
                  is a constant that depends on
                  $b$, $m$, and $a$.



                  I don't know if
                  this can be improved to
                  $n > dfrac{c_0(b, m)}{epsilon}
                  $

                  for some $c_0(b, m)$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 10 at 21:52









                  marty cohenmarty cohen

                  74.2k549128




                  74.2k549128






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069092%2fsum-of-squares-of-digits-of-number-n%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Human spaceflight

                      Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                      File:DeusFollowingSea.jpg