Determine if the series converges absolutely,conditionally or diverges.












0












$begingroup$


The series is as follows
begin{equation}
sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
end{equation}

And I need help for taking the absolute value of the denominator. It cannot be just $|(n+(-1)^n)^2|=(n+1)^2$ right?



Thanks in advance.










share|cite|improve this question











$endgroup$












  • $begingroup$
    you want "series" in the title, not "sequences"
    $endgroup$
    – zhw.
    Jan 10 at 18:56










  • $begingroup$
    ofccccc. thanks
    $endgroup$
    – Allorja
    Jan 10 at 18:58










  • $begingroup$
    Use comparison, compare with $1/n^2.$
    $endgroup$
    – Will M.
    Jan 10 at 20:02










  • $begingroup$
    It would be better if you start the sum from n=2.
    $endgroup$
    – JV.Stalker
    Jan 11 at 4:02
















0












$begingroup$


The series is as follows
begin{equation}
sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
end{equation}

And I need help for taking the absolute value of the denominator. It cannot be just $|(n+(-1)^n)^2|=(n+1)^2$ right?



Thanks in advance.










share|cite|improve this question











$endgroup$












  • $begingroup$
    you want "series" in the title, not "sequences"
    $endgroup$
    – zhw.
    Jan 10 at 18:56










  • $begingroup$
    ofccccc. thanks
    $endgroup$
    – Allorja
    Jan 10 at 18:58










  • $begingroup$
    Use comparison, compare with $1/n^2.$
    $endgroup$
    – Will M.
    Jan 10 at 20:02










  • $begingroup$
    It would be better if you start the sum from n=2.
    $endgroup$
    – JV.Stalker
    Jan 11 at 4:02














0












0








0





$begingroup$


The series is as follows
begin{equation}
sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
end{equation}

And I need help for taking the absolute value of the denominator. It cannot be just $|(n+(-1)^n)^2|=(n+1)^2$ right?



Thanks in advance.










share|cite|improve this question











$endgroup$




The series is as follows
begin{equation}
sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
end{equation}

And I need help for taking the absolute value of the denominator. It cannot be just $|(n+(-1)^n)^2|=(n+1)^2$ right?



Thanks in advance.







real-analysis sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 10 at 18:57







Allorja

















asked Jan 10 at 18:53









AllorjaAllorja

789




789












  • $begingroup$
    you want "series" in the title, not "sequences"
    $endgroup$
    – zhw.
    Jan 10 at 18:56










  • $begingroup$
    ofccccc. thanks
    $endgroup$
    – Allorja
    Jan 10 at 18:58










  • $begingroup$
    Use comparison, compare with $1/n^2.$
    $endgroup$
    – Will M.
    Jan 10 at 20:02










  • $begingroup$
    It would be better if you start the sum from n=2.
    $endgroup$
    – JV.Stalker
    Jan 11 at 4:02


















  • $begingroup$
    you want "series" in the title, not "sequences"
    $endgroup$
    – zhw.
    Jan 10 at 18:56










  • $begingroup$
    ofccccc. thanks
    $endgroup$
    – Allorja
    Jan 10 at 18:58










  • $begingroup$
    Use comparison, compare with $1/n^2.$
    $endgroup$
    – Will M.
    Jan 10 at 20:02










  • $begingroup$
    It would be better if you start the sum from n=2.
    $endgroup$
    – JV.Stalker
    Jan 11 at 4:02
















$begingroup$
you want "series" in the title, not "sequences"
$endgroup$
– zhw.
Jan 10 at 18:56




$begingroup$
you want "series" in the title, not "sequences"
$endgroup$
– zhw.
Jan 10 at 18:56












$begingroup$
ofccccc. thanks
$endgroup$
– Allorja
Jan 10 at 18:58




$begingroup$
ofccccc. thanks
$endgroup$
– Allorja
Jan 10 at 18:58












$begingroup$
Use comparison, compare with $1/n^2.$
$endgroup$
– Will M.
Jan 10 at 20:02




$begingroup$
Use comparison, compare with $1/n^2.$
$endgroup$
– Will M.
Jan 10 at 20:02












$begingroup$
It would be better if you start the sum from n=2.
$endgroup$
– JV.Stalker
Jan 11 at 4:02




$begingroup$
It would be better if you start the sum from n=2.
$endgroup$
– JV.Stalker
Jan 11 at 4:02










3 Answers
3






active

oldest

votes


















0












$begingroup$

Hint: $|n+(-1)^n|^2 ge |n-1|^2.$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Hint



    $$left|frac{(-1)^n}{(n+(-1)^n)^2} right|le {1over (n-1)^2}$$since $$(-1)^nge -1$$






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      begin{equation}
      S=sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
      end{equation}
      S is divergent because at $n=1$, $Srightarrow -infty$.



      If the summation is started from $n=2$ we get the followings:



      begin{equation}
      S^*=sum_{n=1}^{infty} frac{(-1)^{n+1}}{(n+(-1)^{n+1})^2}
      end{equation}



      After separation the even and odd terms we have that:



      $S^*=sumlimits_{k=1}^inftyfrac{1}{4k^2}-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}$



      Known that $sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{pi^2}{8}-1 $



      So begin{equation} S^*=1-frac{pi^2}{12} end{equation}



      The sum is absolutely convergent because:



      $|S^*|=sumlimits_{k=1}^inftyfrac{1}{4k^2}+sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)+frac{pi^2}{8}-1=frac{pi^2}{6}-1$






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069048%2fdetermine-if-the-series-converges-absolutely-conditionally-or-diverges%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        0












        $begingroup$

        Hint: $|n+(-1)^n|^2 ge |n-1|^2.$






        share|cite|improve this answer









        $endgroup$


















          0












          $begingroup$

          Hint: $|n+(-1)^n|^2 ge |n-1|^2.$






          share|cite|improve this answer









          $endgroup$
















            0












            0








            0





            $begingroup$

            Hint: $|n+(-1)^n|^2 ge |n-1|^2.$






            share|cite|improve this answer









            $endgroup$



            Hint: $|n+(-1)^n|^2 ge |n-1|^2.$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 10 at 18:58









            zhw.zhw.

            73.8k43175




            73.8k43175























                0












                $begingroup$

                Hint



                $$left|frac{(-1)^n}{(n+(-1)^n)^2} right|le {1over (n-1)^2}$$since $$(-1)^nge -1$$






                share|cite|improve this answer









                $endgroup$


















                  0












                  $begingroup$

                  Hint



                  $$left|frac{(-1)^n}{(n+(-1)^n)^2} right|le {1over (n-1)^2}$$since $$(-1)^nge -1$$






                  share|cite|improve this answer









                  $endgroup$
















                    0












                    0








                    0





                    $begingroup$

                    Hint



                    $$left|frac{(-1)^n}{(n+(-1)^n)^2} right|le {1over (n-1)^2}$$since $$(-1)^nge -1$$






                    share|cite|improve this answer









                    $endgroup$



                    Hint



                    $$left|frac{(-1)^n}{(n+(-1)^n)^2} right|le {1over (n-1)^2}$$since $$(-1)^nge -1$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 10 at 19:59









                    Mostafa AyazMostafa Ayaz

                    15.7k3939




                    15.7k3939























                        0












                        $begingroup$

                        begin{equation}
                        S=sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
                        end{equation}
                        S is divergent because at $n=1$, $Srightarrow -infty$.



                        If the summation is started from $n=2$ we get the followings:



                        begin{equation}
                        S^*=sum_{n=1}^{infty} frac{(-1)^{n+1}}{(n+(-1)^{n+1})^2}
                        end{equation}



                        After separation the even and odd terms we have that:



                        $S^*=sumlimits_{k=1}^inftyfrac{1}{4k^2}-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}$



                        Known that $sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{pi^2}{8}-1 $



                        So begin{equation} S^*=1-frac{pi^2}{12} end{equation}



                        The sum is absolutely convergent because:



                        $|S^*|=sumlimits_{k=1}^inftyfrac{1}{4k^2}+sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)+frac{pi^2}{8}-1=frac{pi^2}{6}-1$






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          begin{equation}
                          S=sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
                          end{equation}
                          S is divergent because at $n=1$, $Srightarrow -infty$.



                          If the summation is started from $n=2$ we get the followings:



                          begin{equation}
                          S^*=sum_{n=1}^{infty} frac{(-1)^{n+1}}{(n+(-1)^{n+1})^2}
                          end{equation}



                          After separation the even and odd terms we have that:



                          $S^*=sumlimits_{k=1}^inftyfrac{1}{4k^2}-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}$



                          Known that $sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{pi^2}{8}-1 $



                          So begin{equation} S^*=1-frac{pi^2}{12} end{equation}



                          The sum is absolutely convergent because:



                          $|S^*|=sumlimits_{k=1}^inftyfrac{1}{4k^2}+sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)+frac{pi^2}{8}-1=frac{pi^2}{6}-1$






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            begin{equation}
                            S=sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
                            end{equation}
                            S is divergent because at $n=1$, $Srightarrow -infty$.



                            If the summation is started from $n=2$ we get the followings:



                            begin{equation}
                            S^*=sum_{n=1}^{infty} frac{(-1)^{n+1}}{(n+(-1)^{n+1})^2}
                            end{equation}



                            After separation the even and odd terms we have that:



                            $S^*=sumlimits_{k=1}^inftyfrac{1}{4k^2}-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}$



                            Known that $sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{pi^2}{8}-1 $



                            So begin{equation} S^*=1-frac{pi^2}{12} end{equation}



                            The sum is absolutely convergent because:



                            $|S^*|=sumlimits_{k=1}^inftyfrac{1}{4k^2}+sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)+frac{pi^2}{8}-1=frac{pi^2}{6}-1$






                            share|cite|improve this answer









                            $endgroup$



                            begin{equation}
                            S=sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
                            end{equation}
                            S is divergent because at $n=1$, $Srightarrow -infty$.



                            If the summation is started from $n=2$ we get the followings:



                            begin{equation}
                            S^*=sum_{n=1}^{infty} frac{(-1)^{n+1}}{(n+(-1)^{n+1})^2}
                            end{equation}



                            After separation the even and odd terms we have that:



                            $S^*=sumlimits_{k=1}^inftyfrac{1}{4k^2}-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}$



                            Known that $sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{pi^2}{8}-1 $



                            So begin{equation} S^*=1-frac{pi^2}{12} end{equation}



                            The sum is absolutely convergent because:



                            $|S^*|=sumlimits_{k=1}^inftyfrac{1}{4k^2}+sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)+frac{pi^2}{8}-1=frac{pi^2}{6}-1$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 11 at 7:24









                            JV.StalkerJV.Stalker

                            91649




                            91649






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069048%2fdetermine-if-the-series-converges-absolutely-conditionally-or-diverges%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Human spaceflight

                                Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                                張江高科駅