Determine if the series converges absolutely,conditionally or diverges.
$begingroup$
The series is as follows
begin{equation}
sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
end{equation}
And I need help for taking the absolute value of the denominator. It cannot be just $|(n+(-1)^n)^2|=(n+1)^2$ right?
Thanks in advance.
real-analysis sequences-and-series
$endgroup$
add a comment |
$begingroup$
The series is as follows
begin{equation}
sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
end{equation}
And I need help for taking the absolute value of the denominator. It cannot be just $|(n+(-1)^n)^2|=(n+1)^2$ right?
Thanks in advance.
real-analysis sequences-and-series
$endgroup$
$begingroup$
you want "series" in the title, not "sequences"
$endgroup$
– zhw.
Jan 10 at 18:56
$begingroup$
ofccccc. thanks
$endgroup$
– Allorja
Jan 10 at 18:58
$begingroup$
Use comparison, compare with $1/n^2.$
$endgroup$
– Will M.
Jan 10 at 20:02
$begingroup$
It would be better if you start the sum from n=2.
$endgroup$
– JV.Stalker
Jan 11 at 4:02
add a comment |
$begingroup$
The series is as follows
begin{equation}
sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
end{equation}
And I need help for taking the absolute value of the denominator. It cannot be just $|(n+(-1)^n)^2|=(n+1)^2$ right?
Thanks in advance.
real-analysis sequences-and-series
$endgroup$
The series is as follows
begin{equation}
sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
end{equation}
And I need help for taking the absolute value of the denominator. It cannot be just $|(n+(-1)^n)^2|=(n+1)^2$ right?
Thanks in advance.
real-analysis sequences-and-series
real-analysis sequences-and-series
edited Jan 10 at 18:57
Allorja
asked Jan 10 at 18:53
AllorjaAllorja
789
789
$begingroup$
you want "series" in the title, not "sequences"
$endgroup$
– zhw.
Jan 10 at 18:56
$begingroup$
ofccccc. thanks
$endgroup$
– Allorja
Jan 10 at 18:58
$begingroup$
Use comparison, compare with $1/n^2.$
$endgroup$
– Will M.
Jan 10 at 20:02
$begingroup$
It would be better if you start the sum from n=2.
$endgroup$
– JV.Stalker
Jan 11 at 4:02
add a comment |
$begingroup$
you want "series" in the title, not "sequences"
$endgroup$
– zhw.
Jan 10 at 18:56
$begingroup$
ofccccc. thanks
$endgroup$
– Allorja
Jan 10 at 18:58
$begingroup$
Use comparison, compare with $1/n^2.$
$endgroup$
– Will M.
Jan 10 at 20:02
$begingroup$
It would be better if you start the sum from n=2.
$endgroup$
– JV.Stalker
Jan 11 at 4:02
$begingroup$
you want "series" in the title, not "sequences"
$endgroup$
– zhw.
Jan 10 at 18:56
$begingroup$
you want "series" in the title, not "sequences"
$endgroup$
– zhw.
Jan 10 at 18:56
$begingroup$
ofccccc. thanks
$endgroup$
– Allorja
Jan 10 at 18:58
$begingroup$
ofccccc. thanks
$endgroup$
– Allorja
Jan 10 at 18:58
$begingroup$
Use comparison, compare with $1/n^2.$
$endgroup$
– Will M.
Jan 10 at 20:02
$begingroup$
Use comparison, compare with $1/n^2.$
$endgroup$
– Will M.
Jan 10 at 20:02
$begingroup$
It would be better if you start the sum from n=2.
$endgroup$
– JV.Stalker
Jan 11 at 4:02
$begingroup$
It would be better if you start the sum from n=2.
$endgroup$
– JV.Stalker
Jan 11 at 4:02
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Hint: $|n+(-1)^n|^2 ge |n-1|^2.$
$endgroup$
add a comment |
$begingroup$
Hint
$$left|frac{(-1)^n}{(n+(-1)^n)^2} right|le {1over (n-1)^2}$$since $$(-1)^nge -1$$
$endgroup$
add a comment |
$begingroup$
begin{equation}
S=sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
end{equation} S is divergent because at $n=1$, $Srightarrow -infty$.
If the summation is started from $n=2$ we get the followings:
begin{equation}
S^*=sum_{n=1}^{infty} frac{(-1)^{n+1}}{(n+(-1)^{n+1})^2}
end{equation}
After separation the even and odd terms we have that:
$S^*=sumlimits_{k=1}^inftyfrac{1}{4k^2}-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}$
Known that $sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{pi^2}{8}-1 $
So begin{equation} S^*=1-frac{pi^2}{12} end{equation}
The sum is absolutely convergent because:
$|S^*|=sumlimits_{k=1}^inftyfrac{1}{4k^2}+sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)+frac{pi^2}{8}-1=frac{pi^2}{6}-1$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069048%2fdetermine-if-the-series-converges-absolutely-conditionally-or-diverges%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: $|n+(-1)^n|^2 ge |n-1|^2.$
$endgroup$
add a comment |
$begingroup$
Hint: $|n+(-1)^n|^2 ge |n-1|^2.$
$endgroup$
add a comment |
$begingroup$
Hint: $|n+(-1)^n|^2 ge |n-1|^2.$
$endgroup$
Hint: $|n+(-1)^n|^2 ge |n-1|^2.$
answered Jan 10 at 18:58
zhw.zhw.
73.8k43175
73.8k43175
add a comment |
add a comment |
$begingroup$
Hint
$$left|frac{(-1)^n}{(n+(-1)^n)^2} right|le {1over (n-1)^2}$$since $$(-1)^nge -1$$
$endgroup$
add a comment |
$begingroup$
Hint
$$left|frac{(-1)^n}{(n+(-1)^n)^2} right|le {1over (n-1)^2}$$since $$(-1)^nge -1$$
$endgroup$
add a comment |
$begingroup$
Hint
$$left|frac{(-1)^n}{(n+(-1)^n)^2} right|le {1over (n-1)^2}$$since $$(-1)^nge -1$$
$endgroup$
Hint
$$left|frac{(-1)^n}{(n+(-1)^n)^2} right|le {1over (n-1)^2}$$since $$(-1)^nge -1$$
answered Jan 10 at 19:59
Mostafa AyazMostafa Ayaz
15.7k3939
15.7k3939
add a comment |
add a comment |
$begingroup$
begin{equation}
S=sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
end{equation} S is divergent because at $n=1$, $Srightarrow -infty$.
If the summation is started from $n=2$ we get the followings:
begin{equation}
S^*=sum_{n=1}^{infty} frac{(-1)^{n+1}}{(n+(-1)^{n+1})^2}
end{equation}
After separation the even and odd terms we have that:
$S^*=sumlimits_{k=1}^inftyfrac{1}{4k^2}-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}$
Known that $sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{pi^2}{8}-1 $
So begin{equation} S^*=1-frac{pi^2}{12} end{equation}
The sum is absolutely convergent because:
$|S^*|=sumlimits_{k=1}^inftyfrac{1}{4k^2}+sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)+frac{pi^2}{8}-1=frac{pi^2}{6}-1$
$endgroup$
add a comment |
$begingroup$
begin{equation}
S=sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
end{equation} S is divergent because at $n=1$, $Srightarrow -infty$.
If the summation is started from $n=2$ we get the followings:
begin{equation}
S^*=sum_{n=1}^{infty} frac{(-1)^{n+1}}{(n+(-1)^{n+1})^2}
end{equation}
After separation the even and odd terms we have that:
$S^*=sumlimits_{k=1}^inftyfrac{1}{4k^2}-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}$
Known that $sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{pi^2}{8}-1 $
So begin{equation} S^*=1-frac{pi^2}{12} end{equation}
The sum is absolutely convergent because:
$|S^*|=sumlimits_{k=1}^inftyfrac{1}{4k^2}+sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)+frac{pi^2}{8}-1=frac{pi^2}{6}-1$
$endgroup$
add a comment |
$begingroup$
begin{equation}
S=sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
end{equation} S is divergent because at $n=1$, $Srightarrow -infty$.
If the summation is started from $n=2$ we get the followings:
begin{equation}
S^*=sum_{n=1}^{infty} frac{(-1)^{n+1}}{(n+(-1)^{n+1})^2}
end{equation}
After separation the even and odd terms we have that:
$S^*=sumlimits_{k=1}^inftyfrac{1}{4k^2}-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}$
Known that $sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{pi^2}{8}-1 $
So begin{equation} S^*=1-frac{pi^2}{12} end{equation}
The sum is absolutely convergent because:
$|S^*|=sumlimits_{k=1}^inftyfrac{1}{4k^2}+sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)+frac{pi^2}{8}-1=frac{pi^2}{6}-1$
$endgroup$
begin{equation}
S=sum_{n=1}^{infty} frac{(-1)^n}{(n+(-1)^n)^2}
end{equation} S is divergent because at $n=1$, $Srightarrow -infty$.
If the summation is started from $n=2$ we get the followings:
begin{equation}
S^*=sum_{n=1}^{infty} frac{(-1)^{n+1}}{(n+(-1)^{n+1})^2}
end{equation}
After separation the even and odd terms we have that:
$S^*=sumlimits_{k=1}^inftyfrac{1}{4k^2}-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)-sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}$
Known that $sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{pi^2}{8}-1 $
So begin{equation} S^*=1-frac{pi^2}{12} end{equation}
The sum is absolutely convergent because:
$|S^*|=sumlimits_{k=1}^inftyfrac{1}{4k^2}+sumlimits_{k=1}^inftyfrac{1}{(2k+1)^2}=frac{1}{4}zeta(2)+frac{pi^2}{8}-1=frac{pi^2}{6}-1$
answered Jan 11 at 7:24
JV.StalkerJV.Stalker
91649
91649
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069048%2fdetermine-if-the-series-converges-absolutely-conditionally-or-diverges%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
you want "series" in the title, not "sequences"
$endgroup$
– zhw.
Jan 10 at 18:56
$begingroup$
ofccccc. thanks
$endgroup$
– Allorja
Jan 10 at 18:58
$begingroup$
Use comparison, compare with $1/n^2.$
$endgroup$
– Will M.
Jan 10 at 20:02
$begingroup$
It would be better if you start the sum from n=2.
$endgroup$
– JV.Stalker
Jan 11 at 4:02