On invertibility of $A+E$ where $||E||_2<$ smallest singular value of $A$ and $||A^{-1}E||_2<1$












0












$begingroup$


Let $A,E in M_n(mathbb C)$ . Suppose $sigma_min >0$ be the smallest singular value of $A$ and $||E||_2 < sigma_min$. Suppose $||A^{-1}E||_2 <1$. Then how to show that $A+E$ is invertible ?



My work : Going by contradiction; assume ,if possible, $det (A+E)=0$, then $det (I+A^{-1}E)=0$. So $-1$ is an eigenvalue of $A^{-1}E$, so $1=|-1|le ||I+A^{-1}E||_2$, so $||A^{-1}E||_2 <1 le ||I+A^{-1}E||_2$ ; but I am unable to proceed further.



Please help.



NOTE: Here $||M||_2:=sup_{||x||_2=1}||Mx||_2=sigma_max$










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let $A,E in M_n(mathbb C)$ . Suppose $sigma_min >0$ be the smallest singular value of $A$ and $||E||_2 < sigma_min$. Suppose $||A^{-1}E||_2 <1$. Then how to show that $A+E$ is invertible ?



    My work : Going by contradiction; assume ,if possible, $det (A+E)=0$, then $det (I+A^{-1}E)=0$. So $-1$ is an eigenvalue of $A^{-1}E$, so $1=|-1|le ||I+A^{-1}E||_2$, so $||A^{-1}E||_2 <1 le ||I+A^{-1}E||_2$ ; but I am unable to proceed further.



    Please help.



    NOTE: Here $||M||_2:=sup_{||x||_2=1}||Mx||_2=sigma_max$










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Let $A,E in M_n(mathbb C)$ . Suppose $sigma_min >0$ be the smallest singular value of $A$ and $||E||_2 < sigma_min$. Suppose $||A^{-1}E||_2 <1$. Then how to show that $A+E$ is invertible ?



      My work : Going by contradiction; assume ,if possible, $det (A+E)=0$, then $det (I+A^{-1}E)=0$. So $-1$ is an eigenvalue of $A^{-1}E$, so $1=|-1|le ||I+A^{-1}E||_2$, so $||A^{-1}E||_2 <1 le ||I+A^{-1}E||_2$ ; but I am unable to proceed further.



      Please help.



      NOTE: Here $||M||_2:=sup_{||x||_2=1}||Mx||_2=sigma_max$










      share|cite|improve this question











      $endgroup$




      Let $A,E in M_n(mathbb C)$ . Suppose $sigma_min >0$ be the smallest singular value of $A$ and $||E||_2 < sigma_min$. Suppose $||A^{-1}E||_2 <1$. Then how to show that $A+E$ is invertible ?



      My work : Going by contradiction; assume ,if possible, $det (A+E)=0$, then $det (I+A^{-1}E)=0$. So $-1$ is an eigenvalue of $A^{-1}E$, so $1=|-1|le ||I+A^{-1}E||_2$, so $||A^{-1}E||_2 <1 le ||I+A^{-1}E||_2$ ; but I am unable to proceed further.



      Please help.



      NOTE: Here $||M||_2:=sup_{||x||_2=1}||Mx||_2=sigma_max$







      linear-algebra matrices eigenvalues-eigenvectors svd singularvalues






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 12 at 6:53







      user521337

















      asked Jan 12 at 4:53









      user521337user521337

      1,1791417




      1,1791417






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Suppose that $(A+E)(x)=0$, $xneq 0$, this implies that $A(x)=-E(x)$ and $x=-A^{-1}E(x)$, we deduce that $|x|=|A^{-1}E(x)|leq |A^{-1}E||x|<|x|$. Contradiction. This implies that $Ker(A+E)={0}$ and $A+E$ is invertible.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            ah, so simple ... I was thinking the wrong way ... thanks !
            $endgroup$
            – user521337
            Jan 12 at 5:03











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070608%2fon-invertibility-of-ae-where-e-2-smallest-singular-value-of-a-and%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          Suppose that $(A+E)(x)=0$, $xneq 0$, this implies that $A(x)=-E(x)$ and $x=-A^{-1}E(x)$, we deduce that $|x|=|A^{-1}E(x)|leq |A^{-1}E||x|<|x|$. Contradiction. This implies that $Ker(A+E)={0}$ and $A+E$ is invertible.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            ah, so simple ... I was thinking the wrong way ... thanks !
            $endgroup$
            – user521337
            Jan 12 at 5:03
















          0












          $begingroup$

          Suppose that $(A+E)(x)=0$, $xneq 0$, this implies that $A(x)=-E(x)$ and $x=-A^{-1}E(x)$, we deduce that $|x|=|A^{-1}E(x)|leq |A^{-1}E||x|<|x|$. Contradiction. This implies that $Ker(A+E)={0}$ and $A+E$ is invertible.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            ah, so simple ... I was thinking the wrong way ... thanks !
            $endgroup$
            – user521337
            Jan 12 at 5:03














          0












          0








          0





          $begingroup$

          Suppose that $(A+E)(x)=0$, $xneq 0$, this implies that $A(x)=-E(x)$ and $x=-A^{-1}E(x)$, we deduce that $|x|=|A^{-1}E(x)|leq |A^{-1}E||x|<|x|$. Contradiction. This implies that $Ker(A+E)={0}$ and $A+E$ is invertible.






          share|cite|improve this answer









          $endgroup$



          Suppose that $(A+E)(x)=0$, $xneq 0$, this implies that $A(x)=-E(x)$ and $x=-A^{-1}E(x)$, we deduce that $|x|=|A^{-1}E(x)|leq |A^{-1}E||x|<|x|$. Contradiction. This implies that $Ker(A+E)={0}$ and $A+E$ is invertible.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 12 at 4:58









          Tsemo AristideTsemo Aristide

          59.3k11445




          59.3k11445












          • $begingroup$
            ah, so simple ... I was thinking the wrong way ... thanks !
            $endgroup$
            – user521337
            Jan 12 at 5:03


















          • $begingroup$
            ah, so simple ... I was thinking the wrong way ... thanks !
            $endgroup$
            – user521337
            Jan 12 at 5:03
















          $begingroup$
          ah, so simple ... I was thinking the wrong way ... thanks !
          $endgroup$
          – user521337
          Jan 12 at 5:03




          $begingroup$
          ah, so simple ... I was thinking the wrong way ... thanks !
          $endgroup$
          – user521337
          Jan 12 at 5:03


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070608%2fon-invertibility-of-ae-where-e-2-smallest-singular-value-of-a-and%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Human spaceflight

          Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

          張江高科駅