On invertibility of $A+E$ where $||E||_2<$ smallest singular value of $A$ and $||A^{-1}E||_2<1$
$begingroup$
Let $A,E in M_n(mathbb C)$ . Suppose $sigma_min >0$ be the smallest singular value of $A$ and $||E||_2 < sigma_min$. Suppose $||A^{-1}E||_2 <1$. Then how to show that $A+E$ is invertible ?
My work : Going by contradiction; assume ,if possible, $det (A+E)=0$, then $det (I+A^{-1}E)=0$. So $-1$ is an eigenvalue of $A^{-1}E$, so $1=|-1|le ||I+A^{-1}E||_2$, so $||A^{-1}E||_2 <1 le ||I+A^{-1}E||_2$ ; but I am unable to proceed further.
Please help.
NOTE: Here $||M||_2:=sup_{||x||_2=1}||Mx||_2=sigma_max$
linear-algebra matrices eigenvalues-eigenvectors svd singularvalues
$endgroup$
add a comment |
$begingroup$
Let $A,E in M_n(mathbb C)$ . Suppose $sigma_min >0$ be the smallest singular value of $A$ and $||E||_2 < sigma_min$. Suppose $||A^{-1}E||_2 <1$. Then how to show that $A+E$ is invertible ?
My work : Going by contradiction; assume ,if possible, $det (A+E)=0$, then $det (I+A^{-1}E)=0$. So $-1$ is an eigenvalue of $A^{-1}E$, so $1=|-1|le ||I+A^{-1}E||_2$, so $||A^{-1}E||_2 <1 le ||I+A^{-1}E||_2$ ; but I am unable to proceed further.
Please help.
NOTE: Here $||M||_2:=sup_{||x||_2=1}||Mx||_2=sigma_max$
linear-algebra matrices eigenvalues-eigenvectors svd singularvalues
$endgroup$
add a comment |
$begingroup$
Let $A,E in M_n(mathbb C)$ . Suppose $sigma_min >0$ be the smallest singular value of $A$ and $||E||_2 < sigma_min$. Suppose $||A^{-1}E||_2 <1$. Then how to show that $A+E$ is invertible ?
My work : Going by contradiction; assume ,if possible, $det (A+E)=0$, then $det (I+A^{-1}E)=0$. So $-1$ is an eigenvalue of $A^{-1}E$, so $1=|-1|le ||I+A^{-1}E||_2$, so $||A^{-1}E||_2 <1 le ||I+A^{-1}E||_2$ ; but I am unable to proceed further.
Please help.
NOTE: Here $||M||_2:=sup_{||x||_2=1}||Mx||_2=sigma_max$
linear-algebra matrices eigenvalues-eigenvectors svd singularvalues
$endgroup$
Let $A,E in M_n(mathbb C)$ . Suppose $sigma_min >0$ be the smallest singular value of $A$ and $||E||_2 < sigma_min$. Suppose $||A^{-1}E||_2 <1$. Then how to show that $A+E$ is invertible ?
My work : Going by contradiction; assume ,if possible, $det (A+E)=0$, then $det (I+A^{-1}E)=0$. So $-1$ is an eigenvalue of $A^{-1}E$, so $1=|-1|le ||I+A^{-1}E||_2$, so $||A^{-1}E||_2 <1 le ||I+A^{-1}E||_2$ ; but I am unable to proceed further.
Please help.
NOTE: Here $||M||_2:=sup_{||x||_2=1}||Mx||_2=sigma_max$
linear-algebra matrices eigenvalues-eigenvectors svd singularvalues
linear-algebra matrices eigenvalues-eigenvectors svd singularvalues
edited Jan 12 at 6:53
user521337
asked Jan 12 at 4:53
user521337user521337
1,1791417
1,1791417
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Suppose that $(A+E)(x)=0$, $xneq 0$, this implies that $A(x)=-E(x)$ and $x=-A^{-1}E(x)$, we deduce that $|x|=|A^{-1}E(x)|leq |A^{-1}E||x|<|x|$. Contradiction. This implies that $Ker(A+E)={0}$ and $A+E$ is invertible.
$endgroup$
$begingroup$
ah, so simple ... I was thinking the wrong way ... thanks !
$endgroup$
– user521337
Jan 12 at 5:03
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070608%2fon-invertibility-of-ae-where-e-2-smallest-singular-value-of-a-and%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Suppose that $(A+E)(x)=0$, $xneq 0$, this implies that $A(x)=-E(x)$ and $x=-A^{-1}E(x)$, we deduce that $|x|=|A^{-1}E(x)|leq |A^{-1}E||x|<|x|$. Contradiction. This implies that $Ker(A+E)={0}$ and $A+E$ is invertible.
$endgroup$
$begingroup$
ah, so simple ... I was thinking the wrong way ... thanks !
$endgroup$
– user521337
Jan 12 at 5:03
add a comment |
$begingroup$
Suppose that $(A+E)(x)=0$, $xneq 0$, this implies that $A(x)=-E(x)$ and $x=-A^{-1}E(x)$, we deduce that $|x|=|A^{-1}E(x)|leq |A^{-1}E||x|<|x|$. Contradiction. This implies that $Ker(A+E)={0}$ and $A+E$ is invertible.
$endgroup$
$begingroup$
ah, so simple ... I was thinking the wrong way ... thanks !
$endgroup$
– user521337
Jan 12 at 5:03
add a comment |
$begingroup$
Suppose that $(A+E)(x)=0$, $xneq 0$, this implies that $A(x)=-E(x)$ and $x=-A^{-1}E(x)$, we deduce that $|x|=|A^{-1}E(x)|leq |A^{-1}E||x|<|x|$. Contradiction. This implies that $Ker(A+E)={0}$ and $A+E$ is invertible.
$endgroup$
Suppose that $(A+E)(x)=0$, $xneq 0$, this implies that $A(x)=-E(x)$ and $x=-A^{-1}E(x)$, we deduce that $|x|=|A^{-1}E(x)|leq |A^{-1}E||x|<|x|$. Contradiction. This implies that $Ker(A+E)={0}$ and $A+E$ is invertible.
answered Jan 12 at 4:58
Tsemo AristideTsemo Aristide
59.3k11445
59.3k11445
$begingroup$
ah, so simple ... I was thinking the wrong way ... thanks !
$endgroup$
– user521337
Jan 12 at 5:03
add a comment |
$begingroup$
ah, so simple ... I was thinking the wrong way ... thanks !
$endgroup$
– user521337
Jan 12 at 5:03
$begingroup$
ah, so simple ... I was thinking the wrong way ... thanks !
$endgroup$
– user521337
Jan 12 at 5:03
$begingroup$
ah, so simple ... I was thinking the wrong way ... thanks !
$endgroup$
– user521337
Jan 12 at 5:03
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070608%2fon-invertibility-of-ae-where-e-2-smallest-singular-value-of-a-and%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown