Laplace transform of a normal distribution












1












$begingroup$


Let $X$ be a normal distribution with mean $0$ and variance $sigma^2$. Then the Laplace transform of $X$ should be



$int_0^infty e^{-tx} frac{1}{sqrt{2pisigma^2}}exp{-frac{x^2}{2sigma^2}}dx$



Then I try to do integral on



$int_0^infty exp{-frac{x^2}{2sigma^2}-tx}dx=int_0^infty exp{-frac{1}{2sigma^2}[x^2+2sigma^2tx]}dx$



finishing the square we can get



$int_0^infty exp{-frac{1}{2sigma^2}(x+sigma^2 t)^2}dx$



Then I replace $x+sigma^2 t$ by $u$



$int_{sigma^2t}^infty exp{-frac{1}{2sigma^2}u^2}du$



Then I am stuck at this step.










share|cite|improve this question









$endgroup$












  • $begingroup$
    This is as far as it goes: the answer is in terms of the cumulative normal distribution function.
    $endgroup$
    – uniquesolution
    Sep 18 '17 at 15:53












  • $begingroup$
    finishing the square yields another gaussian
    $endgroup$
    – alain
    Jan 22 '18 at 10:51
















1












$begingroup$


Let $X$ be a normal distribution with mean $0$ and variance $sigma^2$. Then the Laplace transform of $X$ should be



$int_0^infty e^{-tx} frac{1}{sqrt{2pisigma^2}}exp{-frac{x^2}{2sigma^2}}dx$



Then I try to do integral on



$int_0^infty exp{-frac{x^2}{2sigma^2}-tx}dx=int_0^infty exp{-frac{1}{2sigma^2}[x^2+2sigma^2tx]}dx$



finishing the square we can get



$int_0^infty exp{-frac{1}{2sigma^2}(x+sigma^2 t)^2}dx$



Then I replace $x+sigma^2 t$ by $u$



$int_{sigma^2t}^infty exp{-frac{1}{2sigma^2}u^2}du$



Then I am stuck at this step.










share|cite|improve this question









$endgroup$












  • $begingroup$
    This is as far as it goes: the answer is in terms of the cumulative normal distribution function.
    $endgroup$
    – uniquesolution
    Sep 18 '17 at 15:53












  • $begingroup$
    finishing the square yields another gaussian
    $endgroup$
    – alain
    Jan 22 '18 at 10:51














1












1








1


1



$begingroup$


Let $X$ be a normal distribution with mean $0$ and variance $sigma^2$. Then the Laplace transform of $X$ should be



$int_0^infty e^{-tx} frac{1}{sqrt{2pisigma^2}}exp{-frac{x^2}{2sigma^2}}dx$



Then I try to do integral on



$int_0^infty exp{-frac{x^2}{2sigma^2}-tx}dx=int_0^infty exp{-frac{1}{2sigma^2}[x^2+2sigma^2tx]}dx$



finishing the square we can get



$int_0^infty exp{-frac{1}{2sigma^2}(x+sigma^2 t)^2}dx$



Then I replace $x+sigma^2 t$ by $u$



$int_{sigma^2t}^infty exp{-frac{1}{2sigma^2}u^2}du$



Then I am stuck at this step.










share|cite|improve this question









$endgroup$




Let $X$ be a normal distribution with mean $0$ and variance $sigma^2$. Then the Laplace transform of $X$ should be



$int_0^infty e^{-tx} frac{1}{sqrt{2pisigma^2}}exp{-frac{x^2}{2sigma^2}}dx$



Then I try to do integral on



$int_0^infty exp{-frac{x^2}{2sigma^2}-tx}dx=int_0^infty exp{-frac{1}{2sigma^2}[x^2+2sigma^2tx]}dx$



finishing the square we can get



$int_0^infty exp{-frac{1}{2sigma^2}(x+sigma^2 t)^2}dx$



Then I replace $x+sigma^2 t$ by $u$



$int_{sigma^2t}^infty exp{-frac{1}{2sigma^2}u^2}du$



Then I am stuck at this step.







probability-theory probability-distributions normal-distribution laplace-transform






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Sep 18 '17 at 15:42









Kenneth.KKenneth.K

499316




499316












  • $begingroup$
    This is as far as it goes: the answer is in terms of the cumulative normal distribution function.
    $endgroup$
    – uniquesolution
    Sep 18 '17 at 15:53












  • $begingroup$
    finishing the square yields another gaussian
    $endgroup$
    – alain
    Jan 22 '18 at 10:51


















  • $begingroup$
    This is as far as it goes: the answer is in terms of the cumulative normal distribution function.
    $endgroup$
    – uniquesolution
    Sep 18 '17 at 15:53












  • $begingroup$
    finishing the square yields another gaussian
    $endgroup$
    – alain
    Jan 22 '18 at 10:51
















$begingroup$
This is as far as it goes: the answer is in terms of the cumulative normal distribution function.
$endgroup$
– uniquesolution
Sep 18 '17 at 15:53






$begingroup$
This is as far as it goes: the answer is in terms of the cumulative normal distribution function.
$endgroup$
– uniquesolution
Sep 18 '17 at 15:53














$begingroup$
finishing the square yields another gaussian
$endgroup$
– alain
Jan 22 '18 at 10:51




$begingroup$
finishing the square yields another gaussian
$endgroup$
– alain
Jan 22 '18 at 10:51










1 Answer
1






active

oldest

votes


















0












$begingroup$

Well, in the general case you're looking at:



$$mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right):=int_0^text{m}frac{text{n}}{expleft(text{s}cdot x+picdottext{n}^2cdot x^2right)}spacetext{d}xtag1$$



Substitute:



$$text{u}:=frac{2cdotpicdottext{n}^2cdot x+text{s}}{2cdotsqrt{pi}cdottext{n}}tag2$$



So, for the integral we get:



$$mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right):=text{n}cdotfrac{expleft(frac{text{s}^2}{4cdotpicdottext{n}^2}right)}{2cdottext{n}}int_{frac{text{s}}{2cdotsqrt{pi}cdottext{n}}}^{frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}}frac{2cdotexpleft(-text{u}^2right)}{sqrt{pi}}spacetext{d}text{u}tag2$$



This is a special integral:



$$int_{frac{text{s}}{2cdotsqrt{pi}cdottext{n}}}^{frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}}frac{2cdotexpleft(-text{u}^2right)}{sqrt{pi}}spacetext{d}text{u}=left[text{erf}left(text{u}right)right]_{frac{text{s}}{2cdotsqrt{pi}cdottext{n}}}^{frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}}=$$
$$text{erf}left(frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}right)-text{erf}left(frac{text{s}}{2cdotsqrt{pi}cdottext{n}}right)tag3$$



So, we end up with:



$$mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right)=text{n}cdotfrac{expleft(frac{text{s}^2}{4cdotpicdottext{n}^2}right)}{2cdottext{n}}cdotleft{text{erf}left(frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}right)-text{erf}left(frac{text{s}}{2cdotsqrt{pi}cdottext{n}}right)right}tag4$$




Now, your task is to simplify and to take:



$$lim_{text{m}toinfty}mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right)tag5$$






Try to prove:



$$lim_{text{m}toinfty}text{erf}left(frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}right)=1tag6$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2434691%2flaplace-transform-of-a-normal-distribution%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Well, in the general case you're looking at:



    $$mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right):=int_0^text{m}frac{text{n}}{expleft(text{s}cdot x+picdottext{n}^2cdot x^2right)}spacetext{d}xtag1$$



    Substitute:



    $$text{u}:=frac{2cdotpicdottext{n}^2cdot x+text{s}}{2cdotsqrt{pi}cdottext{n}}tag2$$



    So, for the integral we get:



    $$mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right):=text{n}cdotfrac{expleft(frac{text{s}^2}{4cdotpicdottext{n}^2}right)}{2cdottext{n}}int_{frac{text{s}}{2cdotsqrt{pi}cdottext{n}}}^{frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}}frac{2cdotexpleft(-text{u}^2right)}{sqrt{pi}}spacetext{d}text{u}tag2$$



    This is a special integral:



    $$int_{frac{text{s}}{2cdotsqrt{pi}cdottext{n}}}^{frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}}frac{2cdotexpleft(-text{u}^2right)}{sqrt{pi}}spacetext{d}text{u}=left[text{erf}left(text{u}right)right]_{frac{text{s}}{2cdotsqrt{pi}cdottext{n}}}^{frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}}=$$
    $$text{erf}left(frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}right)-text{erf}left(frac{text{s}}{2cdotsqrt{pi}cdottext{n}}right)tag3$$



    So, we end up with:



    $$mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right)=text{n}cdotfrac{expleft(frac{text{s}^2}{4cdotpicdottext{n}^2}right)}{2cdottext{n}}cdotleft{text{erf}left(frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}right)-text{erf}left(frac{text{s}}{2cdotsqrt{pi}cdottext{n}}right)right}tag4$$




    Now, your task is to simplify and to take:



    $$lim_{text{m}toinfty}mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right)tag5$$






    Try to prove:



    $$lim_{text{m}toinfty}text{erf}left(frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}right)=1tag6$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Well, in the general case you're looking at:



      $$mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right):=int_0^text{m}frac{text{n}}{expleft(text{s}cdot x+picdottext{n}^2cdot x^2right)}spacetext{d}xtag1$$



      Substitute:



      $$text{u}:=frac{2cdotpicdottext{n}^2cdot x+text{s}}{2cdotsqrt{pi}cdottext{n}}tag2$$



      So, for the integral we get:



      $$mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right):=text{n}cdotfrac{expleft(frac{text{s}^2}{4cdotpicdottext{n}^2}right)}{2cdottext{n}}int_{frac{text{s}}{2cdotsqrt{pi}cdottext{n}}}^{frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}}frac{2cdotexpleft(-text{u}^2right)}{sqrt{pi}}spacetext{d}text{u}tag2$$



      This is a special integral:



      $$int_{frac{text{s}}{2cdotsqrt{pi}cdottext{n}}}^{frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}}frac{2cdotexpleft(-text{u}^2right)}{sqrt{pi}}spacetext{d}text{u}=left[text{erf}left(text{u}right)right]_{frac{text{s}}{2cdotsqrt{pi}cdottext{n}}}^{frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}}=$$
      $$text{erf}left(frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}right)-text{erf}left(frac{text{s}}{2cdotsqrt{pi}cdottext{n}}right)tag3$$



      So, we end up with:



      $$mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right)=text{n}cdotfrac{expleft(frac{text{s}^2}{4cdotpicdottext{n}^2}right)}{2cdottext{n}}cdotleft{text{erf}left(frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}right)-text{erf}left(frac{text{s}}{2cdotsqrt{pi}cdottext{n}}right)right}tag4$$




      Now, your task is to simplify and to take:



      $$lim_{text{m}toinfty}mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right)tag5$$






      Try to prove:



      $$lim_{text{m}toinfty}text{erf}left(frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}right)=1tag6$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Well, in the general case you're looking at:



        $$mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right):=int_0^text{m}frac{text{n}}{expleft(text{s}cdot x+picdottext{n}^2cdot x^2right)}spacetext{d}xtag1$$



        Substitute:



        $$text{u}:=frac{2cdotpicdottext{n}^2cdot x+text{s}}{2cdotsqrt{pi}cdottext{n}}tag2$$



        So, for the integral we get:



        $$mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right):=text{n}cdotfrac{expleft(frac{text{s}^2}{4cdotpicdottext{n}^2}right)}{2cdottext{n}}int_{frac{text{s}}{2cdotsqrt{pi}cdottext{n}}}^{frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}}frac{2cdotexpleft(-text{u}^2right)}{sqrt{pi}}spacetext{d}text{u}tag2$$



        This is a special integral:



        $$int_{frac{text{s}}{2cdotsqrt{pi}cdottext{n}}}^{frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}}frac{2cdotexpleft(-text{u}^2right)}{sqrt{pi}}spacetext{d}text{u}=left[text{erf}left(text{u}right)right]_{frac{text{s}}{2cdotsqrt{pi}cdottext{n}}}^{frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}}=$$
        $$text{erf}left(frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}right)-text{erf}left(frac{text{s}}{2cdotsqrt{pi}cdottext{n}}right)tag3$$



        So, we end up with:



        $$mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right)=text{n}cdotfrac{expleft(frac{text{s}^2}{4cdotpicdottext{n}^2}right)}{2cdottext{n}}cdotleft{text{erf}left(frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}right)-text{erf}left(frac{text{s}}{2cdotsqrt{pi}cdottext{n}}right)right}tag4$$




        Now, your task is to simplify and to take:



        $$lim_{text{m}toinfty}mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right)tag5$$






        Try to prove:



        $$lim_{text{m}toinfty}text{erf}left(frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}right)=1tag6$$






        share|cite|improve this answer









        $endgroup$



        Well, in the general case you're looking at:



        $$mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right):=int_0^text{m}frac{text{n}}{expleft(text{s}cdot x+picdottext{n}^2cdot x^2right)}spacetext{d}xtag1$$



        Substitute:



        $$text{u}:=frac{2cdotpicdottext{n}^2cdot x+text{s}}{2cdotsqrt{pi}cdottext{n}}tag2$$



        So, for the integral we get:



        $$mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right):=text{n}cdotfrac{expleft(frac{text{s}^2}{4cdotpicdottext{n}^2}right)}{2cdottext{n}}int_{frac{text{s}}{2cdotsqrt{pi}cdottext{n}}}^{frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}}frac{2cdotexpleft(-text{u}^2right)}{sqrt{pi}}spacetext{d}text{u}tag2$$



        This is a special integral:



        $$int_{frac{text{s}}{2cdotsqrt{pi}cdottext{n}}}^{frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}}frac{2cdotexpleft(-text{u}^2right)}{sqrt{pi}}spacetext{d}text{u}=left[text{erf}left(text{u}right)right]_{frac{text{s}}{2cdotsqrt{pi}cdottext{n}}}^{frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}}=$$
        $$text{erf}left(frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}right)-text{erf}left(frac{text{s}}{2cdotsqrt{pi}cdottext{n}}right)tag3$$



        So, we end up with:



        $$mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right)=text{n}cdotfrac{expleft(frac{text{s}^2}{4cdotpicdottext{n}^2}right)}{2cdottext{n}}cdotleft{text{erf}left(frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}right)-text{erf}left(frac{text{s}}{2cdotsqrt{pi}cdottext{n}}right)right}tag4$$




        Now, your task is to simplify and to take:



        $$lim_{text{m}toinfty}mathscr{I}_{spacetext{n}}left(text{m}space,spacetext{s}right)tag5$$






        Try to prove:



        $$lim_{text{m}toinfty}text{erf}left(frac{2cdotpicdottext{n}^2cdottext{m}+text{s}}{2cdotsqrt{pi}cdottext{n}}right)=1tag6$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Sep 18 '17 at 15:55









        JanJan

        22.1k31340




        22.1k31340






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2434691%2flaplace-transform-of-a-normal-distribution%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            File:DeusFollowingSea.jpg