How to get the identity $frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)frac{1}{(b - a)}$ when $a < b$?
$begingroup$
How does one arrive at the equality $frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)(b - a)$ when $a < b$? I came across this identity in a competitive programming problem, but I couldn't find out any way to get it. For example,
$$frac{1}{2 cdot 3} = left(frac{1}{2} - frac{1}{3}right)frac{1}{(3 - 2)},$$
and
$$frac{1}{3 cdot 5} = left(frac{1}{3} - frac{1}{5}right)frac{1}{(5 - 3)}.$$
algebra-precalculus proof-writing
$endgroup$
add a comment |
$begingroup$
How does one arrive at the equality $frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)(b - a)$ when $a < b$? I came across this identity in a competitive programming problem, but I couldn't find out any way to get it. For example,
$$frac{1}{2 cdot 3} = left(frac{1}{2} - frac{1}{3}right)frac{1}{(3 - 2)},$$
and
$$frac{1}{3 cdot 5} = left(frac{1}{3} - frac{1}{5}right)frac{1}{(5 - 3)}.$$
algebra-precalculus proof-writing
$endgroup$
1
$begingroup$
They probably mean begin{eqnarray*} frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)frac{1}{(b - a)}. end{eqnarray*}
$endgroup$
– Donald Splutterwit
Jan 13 at 20:46
$begingroup$
Yes, I have fixed it.
$endgroup$
– joseph
Jan 13 at 20:47
$begingroup$
Common denominator of the difference of reciprocals.
$endgroup$
– Hans Engler
Jan 13 at 20:48
2
$begingroup$
This follows trivially from $frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$.
$endgroup$
– Dietrich Burde
Jan 13 at 20:48
$begingroup$
They just compute both sides and see they are the same.
$endgroup$
– Saucy O'Path
Jan 13 at 20:49
add a comment |
$begingroup$
How does one arrive at the equality $frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)(b - a)$ when $a < b$? I came across this identity in a competitive programming problem, but I couldn't find out any way to get it. For example,
$$frac{1}{2 cdot 3} = left(frac{1}{2} - frac{1}{3}right)frac{1}{(3 - 2)},$$
and
$$frac{1}{3 cdot 5} = left(frac{1}{3} - frac{1}{5}right)frac{1}{(5 - 3)}.$$
algebra-precalculus proof-writing
$endgroup$
How does one arrive at the equality $frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)(b - a)$ when $a < b$? I came across this identity in a competitive programming problem, but I couldn't find out any way to get it. For example,
$$frac{1}{2 cdot 3} = left(frac{1}{2} - frac{1}{3}right)frac{1}{(3 - 2)},$$
and
$$frac{1}{3 cdot 5} = left(frac{1}{3} - frac{1}{5}right)frac{1}{(5 - 3)}.$$
algebra-precalculus proof-writing
algebra-precalculus proof-writing
edited Jan 13 at 20:56
Michael Rozenberg
108k1895200
108k1895200
asked Jan 13 at 20:43
josephjoseph
496111
496111
1
$begingroup$
They probably mean begin{eqnarray*} frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)frac{1}{(b - a)}. end{eqnarray*}
$endgroup$
– Donald Splutterwit
Jan 13 at 20:46
$begingroup$
Yes, I have fixed it.
$endgroup$
– joseph
Jan 13 at 20:47
$begingroup$
Common denominator of the difference of reciprocals.
$endgroup$
– Hans Engler
Jan 13 at 20:48
2
$begingroup$
This follows trivially from $frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$.
$endgroup$
– Dietrich Burde
Jan 13 at 20:48
$begingroup$
They just compute both sides and see they are the same.
$endgroup$
– Saucy O'Path
Jan 13 at 20:49
add a comment |
1
$begingroup$
They probably mean begin{eqnarray*} frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)frac{1}{(b - a)}. end{eqnarray*}
$endgroup$
– Donald Splutterwit
Jan 13 at 20:46
$begingroup$
Yes, I have fixed it.
$endgroup$
– joseph
Jan 13 at 20:47
$begingroup$
Common denominator of the difference of reciprocals.
$endgroup$
– Hans Engler
Jan 13 at 20:48
2
$begingroup$
This follows trivially from $frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$.
$endgroup$
– Dietrich Burde
Jan 13 at 20:48
$begingroup$
They just compute both sides and see they are the same.
$endgroup$
– Saucy O'Path
Jan 13 at 20:49
1
1
$begingroup$
They probably mean begin{eqnarray*} frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)frac{1}{(b - a)}. end{eqnarray*}
$endgroup$
– Donald Splutterwit
Jan 13 at 20:46
$begingroup$
They probably mean begin{eqnarray*} frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)frac{1}{(b - a)}. end{eqnarray*}
$endgroup$
– Donald Splutterwit
Jan 13 at 20:46
$begingroup$
Yes, I have fixed it.
$endgroup$
– joseph
Jan 13 at 20:47
$begingroup$
Yes, I have fixed it.
$endgroup$
– joseph
Jan 13 at 20:47
$begingroup$
Common denominator of the difference of reciprocals.
$endgroup$
– Hans Engler
Jan 13 at 20:48
$begingroup$
Common denominator of the difference of reciprocals.
$endgroup$
– Hans Engler
Jan 13 at 20:48
2
2
$begingroup$
This follows trivially from $frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$.
$endgroup$
– Dietrich Burde
Jan 13 at 20:48
$begingroup$
This follows trivially from $frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$.
$endgroup$
– Dietrich Burde
Jan 13 at 20:48
$begingroup$
They just compute both sides and see they are the same.
$endgroup$
– Saucy O'Path
Jan 13 at 20:49
$begingroup$
They just compute both sides and see they are the same.
$endgroup$
– Saucy O'Path
Jan 13 at 20:49
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
For $a,bne 0$ and $ane b$, multiply both sides in $ab(b-a)$ and double-sidedly conclude what you want.
$endgroup$
add a comment |
$begingroup$
Because $$frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$$ and since $b-aneq0$, we are done.
$endgroup$
add a comment |
$begingroup$
$frac{1}{ab} = frac{b - a}{ab(b - a)} = big(frac{b-a}{ab})/(b-a) = big(frac{1}{a} - frac{1}{b}big)/(b - a)$
if $b-a neq0$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072489%2fhow-to-get-the-identity-frac1ab-left-frac1a-frac1b-right-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $a,bne 0$ and $ane b$, multiply both sides in $ab(b-a)$ and double-sidedly conclude what you want.
$endgroup$
add a comment |
$begingroup$
For $a,bne 0$ and $ane b$, multiply both sides in $ab(b-a)$ and double-sidedly conclude what you want.
$endgroup$
add a comment |
$begingroup$
For $a,bne 0$ and $ane b$, multiply both sides in $ab(b-a)$ and double-sidedly conclude what you want.
$endgroup$
For $a,bne 0$ and $ane b$, multiply both sides in $ab(b-a)$ and double-sidedly conclude what you want.
answered Jan 13 at 20:54
Mostafa AyazMostafa Ayaz
17k3939
17k3939
add a comment |
add a comment |
$begingroup$
Because $$frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$$ and since $b-aneq0$, we are done.
$endgroup$
add a comment |
$begingroup$
Because $$frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$$ and since $b-aneq0$, we are done.
$endgroup$
add a comment |
$begingroup$
Because $$frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$$ and since $b-aneq0$, we are done.
$endgroup$
Because $$frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$$ and since $b-aneq0$, we are done.
answered Jan 13 at 20:50
Michael RozenbergMichael Rozenberg
108k1895200
108k1895200
add a comment |
add a comment |
$begingroup$
$frac{1}{ab} = frac{b - a}{ab(b - a)} = big(frac{b-a}{ab})/(b-a) = big(frac{1}{a} - frac{1}{b}big)/(b - a)$
if $b-a neq0$
$endgroup$
add a comment |
$begingroup$
$frac{1}{ab} = frac{b - a}{ab(b - a)} = big(frac{b-a}{ab})/(b-a) = big(frac{1}{a} - frac{1}{b}big)/(b - a)$
if $b-a neq0$
$endgroup$
add a comment |
$begingroup$
$frac{1}{ab} = frac{b - a}{ab(b - a)} = big(frac{b-a}{ab})/(b-a) = big(frac{1}{a} - frac{1}{b}big)/(b - a)$
if $b-a neq0$
$endgroup$
$frac{1}{ab} = frac{b - a}{ab(b - a)} = big(frac{b-a}{ab})/(b-a) = big(frac{1}{a} - frac{1}{b}big)/(b - a)$
if $b-a neq0$
edited Jan 13 at 21:03
J. W. Tanner
3,4851320
3,4851320
answered Jan 13 at 20:52
kelalakakelalaka
3351314
3351314
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072489%2fhow-to-get-the-identity-frac1ab-left-frac1a-frac1b-right-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
They probably mean begin{eqnarray*} frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)frac{1}{(b - a)}. end{eqnarray*}
$endgroup$
– Donald Splutterwit
Jan 13 at 20:46
$begingroup$
Yes, I have fixed it.
$endgroup$
– joseph
Jan 13 at 20:47
$begingroup$
Common denominator of the difference of reciprocals.
$endgroup$
– Hans Engler
Jan 13 at 20:48
2
$begingroup$
This follows trivially from $frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$.
$endgroup$
– Dietrich Burde
Jan 13 at 20:48
$begingroup$
They just compute both sides and see they are the same.
$endgroup$
– Saucy O'Path
Jan 13 at 20:49