Calculate $int_{E_{3}}e^{-z}dlambda^{3}(x,y,z)$
$begingroup$
Let $E_{3}:={ x in mathbb R^{3}: vert vert x vert vertleq 1}$
Calculate $int_{E_{3}}e^{-z}dlambda^{3}(x,y,z)$
Using the polar coordinates formula:
$int_{E_{3}}e^{-z}dlambda^{3}(x,y,z)=int_{0}^{1}int_{0}^{2pi}int_{0}^{pi}e^{-rcostheta}r^{2}sin{theta}dtheta dvarphi dr$
Let $alpha=-cos{theta}$
Then:
$$int_{0}^{1}int_{0}^{2pi}int_{0}^{pi}e^{-rcostheta}r^{2}sin{theta}dtheta dvarphi dr{=int_{0}^{1}int_{0}^{2pi}int_{theta=0}^{theta=pi}e^{ralpha}r^{2}dalpha dvarphi dr\=int_{0}^{1}int_{0}^{2pi}int_{-1}^{1}e^{ralpha}r^{2}dalpha dvarphi dr\=int_{0}^{1}int_{0}^{2pi}r^2[frac{1}{r}e^{ralpha}vert_{-1}^{1}]dvarphi dr\=int_{0}^{1}int_{0}^{2pi}re^{r}-re^{-r}dvarphi dr\=2piint_{0}^{1}re^r-re^{-r}dr\=2pi([e^r(r-1)vert_{0}^{1}-[-e^{-r}(r+1)vert_{0}^{1}])\=2pi[1+2e^{-1}-1]\=4pi e^{-1}}$$
I am unable to see where I went wrong...
Any help
real-analysis multivariable-calculus
$endgroup$
add a comment |
$begingroup$
Let $E_{3}:={ x in mathbb R^{3}: vert vert x vert vertleq 1}$
Calculate $int_{E_{3}}e^{-z}dlambda^{3}(x,y,z)$
Using the polar coordinates formula:
$int_{E_{3}}e^{-z}dlambda^{3}(x,y,z)=int_{0}^{1}int_{0}^{2pi}int_{0}^{pi}e^{-rcostheta}r^{2}sin{theta}dtheta dvarphi dr$
Let $alpha=-cos{theta}$
Then:
$$int_{0}^{1}int_{0}^{2pi}int_{0}^{pi}e^{-rcostheta}r^{2}sin{theta}dtheta dvarphi dr{=int_{0}^{1}int_{0}^{2pi}int_{theta=0}^{theta=pi}e^{ralpha}r^{2}dalpha dvarphi dr\=int_{0}^{1}int_{0}^{2pi}int_{-1}^{1}e^{ralpha}r^{2}dalpha dvarphi dr\=int_{0}^{1}int_{0}^{2pi}r^2[frac{1}{r}e^{ralpha}vert_{-1}^{1}]dvarphi dr\=int_{0}^{1}int_{0}^{2pi}re^{r}-re^{-r}dvarphi dr\=2piint_{0}^{1}re^r-re^{-r}dr\=2pi([e^r(r-1)vert_{0}^{1}-[-e^{-r}(r+1)vert_{0}^{1}])\=2pi[1+2e^{-1}-1]\=4pi e^{-1}}$$
I am unable to see where I went wrong...
Any help
real-analysis multivariable-calculus
$endgroup$
$begingroup$
Your proof sounds perfectly fine to me.....
$endgroup$
– Mostafa Ayaz
Jan 13 at 22:35
add a comment |
$begingroup$
Let $E_{3}:={ x in mathbb R^{3}: vert vert x vert vertleq 1}$
Calculate $int_{E_{3}}e^{-z}dlambda^{3}(x,y,z)$
Using the polar coordinates formula:
$int_{E_{3}}e^{-z}dlambda^{3}(x,y,z)=int_{0}^{1}int_{0}^{2pi}int_{0}^{pi}e^{-rcostheta}r^{2}sin{theta}dtheta dvarphi dr$
Let $alpha=-cos{theta}$
Then:
$$int_{0}^{1}int_{0}^{2pi}int_{0}^{pi}e^{-rcostheta}r^{2}sin{theta}dtheta dvarphi dr{=int_{0}^{1}int_{0}^{2pi}int_{theta=0}^{theta=pi}e^{ralpha}r^{2}dalpha dvarphi dr\=int_{0}^{1}int_{0}^{2pi}int_{-1}^{1}e^{ralpha}r^{2}dalpha dvarphi dr\=int_{0}^{1}int_{0}^{2pi}r^2[frac{1}{r}e^{ralpha}vert_{-1}^{1}]dvarphi dr\=int_{0}^{1}int_{0}^{2pi}re^{r}-re^{-r}dvarphi dr\=2piint_{0}^{1}re^r-re^{-r}dr\=2pi([e^r(r-1)vert_{0}^{1}-[-e^{-r}(r+1)vert_{0}^{1}])\=2pi[1+2e^{-1}-1]\=4pi e^{-1}}$$
I am unable to see where I went wrong...
Any help
real-analysis multivariable-calculus
$endgroup$
Let $E_{3}:={ x in mathbb R^{3}: vert vert x vert vertleq 1}$
Calculate $int_{E_{3}}e^{-z}dlambda^{3}(x,y,z)$
Using the polar coordinates formula:
$int_{E_{3}}e^{-z}dlambda^{3}(x,y,z)=int_{0}^{1}int_{0}^{2pi}int_{0}^{pi}e^{-rcostheta}r^{2}sin{theta}dtheta dvarphi dr$
Let $alpha=-cos{theta}$
Then:
$$int_{0}^{1}int_{0}^{2pi}int_{0}^{pi}e^{-rcostheta}r^{2}sin{theta}dtheta dvarphi dr{=int_{0}^{1}int_{0}^{2pi}int_{theta=0}^{theta=pi}e^{ralpha}r^{2}dalpha dvarphi dr\=int_{0}^{1}int_{0}^{2pi}int_{-1}^{1}e^{ralpha}r^{2}dalpha dvarphi dr\=int_{0}^{1}int_{0}^{2pi}r^2[frac{1}{r}e^{ralpha}vert_{-1}^{1}]dvarphi dr\=int_{0}^{1}int_{0}^{2pi}re^{r}-re^{-r}dvarphi dr\=2piint_{0}^{1}re^r-re^{-r}dr\=2pi([e^r(r-1)vert_{0}^{1}-[-e^{-r}(r+1)vert_{0}^{1}])\=2pi[1+2e^{-1}-1]\=4pi e^{-1}}$$
I am unable to see where I went wrong...
Any help
real-analysis multivariable-calculus
real-analysis multivariable-calculus
edited Jan 13 at 22:32
Mostafa Ayaz
17k31039
17k31039
asked Jan 13 at 21:08
MinaThumaMinaThuma
1968
1968
$begingroup$
Your proof sounds perfectly fine to me.....
$endgroup$
– Mostafa Ayaz
Jan 13 at 22:35
add a comment |
$begingroup$
Your proof sounds perfectly fine to me.....
$endgroup$
– Mostafa Ayaz
Jan 13 at 22:35
$begingroup$
Your proof sounds perfectly fine to me.....
$endgroup$
– Mostafa Ayaz
Jan 13 at 22:35
$begingroup$
Your proof sounds perfectly fine to me.....
$endgroup$
– Mostafa Ayaz
Jan 13 at 22:35
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072521%2fcalculate-int-e-3e-zd-lambda3x-y-z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072521%2fcalculate-int-e-3e-zd-lambda3x-y-z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Your proof sounds perfectly fine to me.....
$endgroup$
– Mostafa Ayaz
Jan 13 at 22:35