Computing the Fourier transform of $cos(x/2)$












0












$begingroup$


How can I prove that $int_{-pi}^{pi} cos(x/2)e^{ixt} dx=frac{4cos(pi t)}{1-4t^2}$?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    I think integration by parts twice will work.
    $endgroup$
    – projectilemotion
    Jan 13 at 20:25
















0












$begingroup$


How can I prove that $int_{-pi}^{pi} cos(x/2)e^{ixt} dx=frac{4cos(pi t)}{1-4t^2}$?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    I think integration by parts twice will work.
    $endgroup$
    – projectilemotion
    Jan 13 at 20:25














0












0








0





$begingroup$


How can I prove that $int_{-pi}^{pi} cos(x/2)e^{ixt} dx=frac{4cos(pi t)}{1-4t^2}$?










share|cite|improve this question











$endgroup$




How can I prove that $int_{-pi}^{pi} cos(x/2)e^{ixt} dx=frac{4cos(pi t)}{1-4t^2}$?







fourier-transform






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 13 at 20:34









Robert Z

101k1070143




101k1070143










asked Jan 13 at 20:22









eraldcoileraldcoil

393211




393211








  • 2




    $begingroup$
    I think integration by parts twice will work.
    $endgroup$
    – projectilemotion
    Jan 13 at 20:25














  • 2




    $begingroup$
    I think integration by parts twice will work.
    $endgroup$
    – projectilemotion
    Jan 13 at 20:25








2




2




$begingroup$
I think integration by parts twice will work.
$endgroup$
– projectilemotion
Jan 13 at 20:25




$begingroup$
I think integration by parts twice will work.
$endgroup$
– projectilemotion
Jan 13 at 20:25










2 Answers
2






active

oldest

votes


















2












$begingroup$

You can utilize the exponential form of the cosine to combine exponentials



$$begin{align}int_{-pi}^pi cos(frac{x}{2})e^{ixt}dx&=frac{1}{2}int_{-pi}^pi (e^{frac{ix}{2}}+e^{-frac{ix}{2}})e^{ixt}dx\ \
&=frac{1}{2}int_{-pi}^pi e^{ix(t+frac{1}{2})}dx+frac{1}{2}int_{-pi}^pi e^{ix(t-frac{1}{2})}dx\ \
&=frac{1}{2}left(frac{e^{ipi(t+frac{1}{2})}-e^{-ipi(t+frac{1}{2})}}{i(t+frac{1}{2})}+frac{e^{ipi(t-frac{1}{2})}-e^{-ipi(t-frac{1}{2})}}{i(t-frac{1}{2})}right)end{align}$$
Adding the two terms together inside and using the exponential definition of the cosine again yields the answer.






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    By parts, as hinted by @projectilemotion.



    $$I=intcosfrac x2e^{ixt}dx=2sinfrac x2e^{ixt}-i2tintsinfrac x2e^{ixt}dx
    \=2sinfrac x2e^{ixt}+i2tcosfrac x2e^{ixt}dx+4t^2I.$$



    When integrating from $-pi$ to $pi$, the first term equals



    $$2(e^{ixt}+e^{-ixt})$$ and the second vanishes.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072472%2fcomputing-the-fourier-transform-of-cosx-2%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      You can utilize the exponential form of the cosine to combine exponentials



      $$begin{align}int_{-pi}^pi cos(frac{x}{2})e^{ixt}dx&=frac{1}{2}int_{-pi}^pi (e^{frac{ix}{2}}+e^{-frac{ix}{2}})e^{ixt}dx\ \
      &=frac{1}{2}int_{-pi}^pi e^{ix(t+frac{1}{2})}dx+frac{1}{2}int_{-pi}^pi e^{ix(t-frac{1}{2})}dx\ \
      &=frac{1}{2}left(frac{e^{ipi(t+frac{1}{2})}-e^{-ipi(t+frac{1}{2})}}{i(t+frac{1}{2})}+frac{e^{ipi(t-frac{1}{2})}-e^{-ipi(t-frac{1}{2})}}{i(t-frac{1}{2})}right)end{align}$$
      Adding the two terms together inside and using the exponential definition of the cosine again yields the answer.






      share|cite|improve this answer











      $endgroup$


















        2












        $begingroup$

        You can utilize the exponential form of the cosine to combine exponentials



        $$begin{align}int_{-pi}^pi cos(frac{x}{2})e^{ixt}dx&=frac{1}{2}int_{-pi}^pi (e^{frac{ix}{2}}+e^{-frac{ix}{2}})e^{ixt}dx\ \
        &=frac{1}{2}int_{-pi}^pi e^{ix(t+frac{1}{2})}dx+frac{1}{2}int_{-pi}^pi e^{ix(t-frac{1}{2})}dx\ \
        &=frac{1}{2}left(frac{e^{ipi(t+frac{1}{2})}-e^{-ipi(t+frac{1}{2})}}{i(t+frac{1}{2})}+frac{e^{ipi(t-frac{1}{2})}-e^{-ipi(t-frac{1}{2})}}{i(t-frac{1}{2})}right)end{align}$$
        Adding the two terms together inside and using the exponential definition of the cosine again yields the answer.






        share|cite|improve this answer











        $endgroup$
















          2












          2








          2





          $begingroup$

          You can utilize the exponential form of the cosine to combine exponentials



          $$begin{align}int_{-pi}^pi cos(frac{x}{2})e^{ixt}dx&=frac{1}{2}int_{-pi}^pi (e^{frac{ix}{2}}+e^{-frac{ix}{2}})e^{ixt}dx\ \
          &=frac{1}{2}int_{-pi}^pi e^{ix(t+frac{1}{2})}dx+frac{1}{2}int_{-pi}^pi e^{ix(t-frac{1}{2})}dx\ \
          &=frac{1}{2}left(frac{e^{ipi(t+frac{1}{2})}-e^{-ipi(t+frac{1}{2})}}{i(t+frac{1}{2})}+frac{e^{ipi(t-frac{1}{2})}-e^{-ipi(t-frac{1}{2})}}{i(t-frac{1}{2})}right)end{align}$$
          Adding the two terms together inside and using the exponential definition of the cosine again yields the answer.






          share|cite|improve this answer











          $endgroup$



          You can utilize the exponential form of the cosine to combine exponentials



          $$begin{align}int_{-pi}^pi cos(frac{x}{2})e^{ixt}dx&=frac{1}{2}int_{-pi}^pi (e^{frac{ix}{2}}+e^{-frac{ix}{2}})e^{ixt}dx\ \
          &=frac{1}{2}int_{-pi}^pi e^{ix(t+frac{1}{2})}dx+frac{1}{2}int_{-pi}^pi e^{ix(t-frac{1}{2})}dx\ \
          &=frac{1}{2}left(frac{e^{ipi(t+frac{1}{2})}-e^{-ipi(t+frac{1}{2})}}{i(t+frac{1}{2})}+frac{e^{ipi(t-frac{1}{2})}-e^{-ipi(t-frac{1}{2})}}{i(t-frac{1}{2})}right)end{align}$$
          Adding the two terms together inside and using the exponential definition of the cosine again yields the answer.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 13 at 20:43









          Namaste

          1




          1










          answered Jan 13 at 20:33









          aledenaleden

          2,5051511




          2,5051511























              1












              $begingroup$

              By parts, as hinted by @projectilemotion.



              $$I=intcosfrac x2e^{ixt}dx=2sinfrac x2e^{ixt}-i2tintsinfrac x2e^{ixt}dx
              \=2sinfrac x2e^{ixt}+i2tcosfrac x2e^{ixt}dx+4t^2I.$$



              When integrating from $-pi$ to $pi$, the first term equals



              $$2(e^{ixt}+e^{-ixt})$$ and the second vanishes.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                By parts, as hinted by @projectilemotion.



                $$I=intcosfrac x2e^{ixt}dx=2sinfrac x2e^{ixt}-i2tintsinfrac x2e^{ixt}dx
                \=2sinfrac x2e^{ixt}+i2tcosfrac x2e^{ixt}dx+4t^2I.$$



                When integrating from $-pi$ to $pi$, the first term equals



                $$2(e^{ixt}+e^{-ixt})$$ and the second vanishes.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  By parts, as hinted by @projectilemotion.



                  $$I=intcosfrac x2e^{ixt}dx=2sinfrac x2e^{ixt}-i2tintsinfrac x2e^{ixt}dx
                  \=2sinfrac x2e^{ixt}+i2tcosfrac x2e^{ixt}dx+4t^2I.$$



                  When integrating from $-pi$ to $pi$, the first term equals



                  $$2(e^{ixt}+e^{-ixt})$$ and the second vanishes.






                  share|cite|improve this answer









                  $endgroup$



                  By parts, as hinted by @projectilemotion.



                  $$I=intcosfrac x2e^{ixt}dx=2sinfrac x2e^{ixt}-i2tintsinfrac x2e^{ixt}dx
                  \=2sinfrac x2e^{ixt}+i2tcosfrac x2e^{ixt}dx+4t^2I.$$



                  When integrating from $-pi$ to $pi$, the first term equals



                  $$2(e^{ixt}+e^{-ixt})$$ and the second vanishes.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 13 at 20:43









                  Yves DaoustYves Daoust

                  131k676229




                  131k676229






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072472%2fcomputing-the-fourier-transform-of-cosx-2%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Human spaceflight

                      Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                      張江高科駅