石油

Multi tool use
Multi tool use




石油(せきゆ)とは、炭化水素を主成分として、ほかに少量の硫黄・酸素・窒素などさまざまな物質を含む液状の油で、鉱物資源の一種である。地下の油田から採掘後、ガス、水分、異物などを大まかに除去した精製前のものを特に原油(げんゆ)という。




原油の瓶詰め




石油タンク




目次






  • 1 概要


  • 2 起源


    • 2.1 生物由来説(有機成因論)


    • 2.2 無機成因論


    • 2.3 石油分解菌説




  • 3 成分


    • 3.1 天然ガス


    • 3.2 ナフサ


    • 3.3 灯油・軽油


    • 3.4 重油


    • 3.5 残油




  • 4 公害・環境問題


  • 5 歴史


    • 5.1 19世紀まで


    • 5.2 第二次世界大戦まで


    • 5.3 第二次世界大戦後




  • 6 日本の石油事情


    • 6.1 日本の石油会社


      • 6.1.1 国内石油会社




    • 6.2 日本の石油諸税


    • 6.3 日本の石油輸入先


    • 6.4 日本の石油備蓄


    • 6.5 アメリカの石油戦略備蓄




  • 7 可採量


    • 7.1 可採年数


    • 7.2 価格上昇


    • 7.3 消費量の増大


    • 7.4 採油技術の向上




  • 8 統計


    • 8.1 1日あたり原油生産量


    • 8.2 確認埋蔵量


    • 8.3 主な産油国と油田一覧




  • 9 脚注


  • 10 参考文献


  • 11 関連項目


  • 12 外部リンク





概要


「石油」は沈括の『夢溪筆談』からの言葉[1]。英語で石油は「Petroleum」という。これはラテン語のPetra(岩石)とOleum(油)を語源とする。狭義には天然の原油(crude oil)のことを指すが、より広い意味では天然ガスや固体のアスファルトなどを含める。さらに、原油を原料として製造された石油製品や石油化学製品をも含めることがある。また、日常生活では灯油を「石油」と呼ぶことも多い。


古くは石脳油(せきのうゆ)とも呼ばれた。


また、石油製品は連産品と呼ばれる。これは原油を精製してガソリンや灯油などを作る場合、ある特定の製品のみを作ることは出来ず、必ず全部の種類の油が生産されてしまうため、こう呼ばれている。石油の精製とは油を性質の違いで分ける事(分留)なので、精製する元の原油の種類によって、生産される製品の割合(留分)が異なってくる。留分の中でも需要の多いガソリンはより重い油を改質することで作ることができる。[2]


現在は主に化石燃料として世界中でさまざまな用途で使用されており、現代人類文明を代表する重要な物質であるが、膨大な量が消費されており、いずれ枯渇すると危惧されている。その割には、特に石炭に対して、熱効率以外の利点は知られていない。さらに、中東の油田があまりにも有名なので見えにくい事実であるが、実は石炭より資源が均等に分布しており補給に都合がよい。


近年では、シェールオイルやオイルサンドなどに代表される非在来型資源と呼ばれる資源が注目を集めている。存在自体は古くから知られていたものの、これまでは掘削技術や採算性の面からあまり開発が行われてこなかった。近年の掘削技術の進展や原油価格の高騰により採算が取れる見通しとなったことから、2015年現在では北米地域を中心に開発が進められている。シェールオイル等の資源自体は世界中に遍在し、埋蔵資源量も在来型の石油資源を上回ると見込まれていることから、石油のさらなる安定供給や資源の偏在の解消などが期待されているが、一方で在来型の石油資源と比べ掘削コストが高く、石油価格の低迷時には油田開発が低迷する傾向がある。詳細は各項目を参照のこと。



起源



生物由来説(有機成因論)


現在の学説の主流である。百万年以上の長期間にわたって厚い土砂の堆積層に埋没した生物遺骸は、高温と高圧によって油母 (en:kerogen) という物質に変わり、次いで液体やガスの炭化水素へと変化する。これらは岩盤内の隙間を移動し、貯留層と呼ばれる砂岩や石灰岩など多孔質岩石に捕捉されて、油田を形成する。この由来から、石炭とともに化石燃料とも呼ばれる。


有機成因論の根拠として石油中に含まれるバイオマーカーの存在がある。
葉緑素に由来するポルフィリンや、コレステロールに由来するステラン、あるいは、酵素の関与しない化学反応では生成が困難な光学活性をもつ有機化合物などが石油に含まれるバイオマーカーとして知られている。


これら石油の大部分は油母(ケロジェン)の熱分解によって生成していると考えられている。
これは、石油中に含まれる炭化水素の炭素同位体比を調べた結果、炭素数の少ない炭化水素ほど、質量の軽い炭素同位体を含む割合が多くなるという傾向が、熱分解による炭化水素の生成の傾向と同じであることが知られているためである。


この結果は、メタンのような炭素数の少ない炭化水素の重合によって石油が生成したとする無機成因説とは矛盾するため、多くの学者は有機成因説を支持している。石油とは有機物が熟成したもの、太陽光による二酸化炭素の光合成で出来た植物、藻などの有機物が海底に堆積し石油になったものである。堆積盆地とは、地層が堆積する盆のようなところで、ここの岩石が地殻変動で褶曲し、馬の背のような形のように盛り上がった地質構造 (背斜構造) の上部にガス、油、水が軽い順に移動、濃集したものを油田と呼ぶ。


地球物理学者の石井吉徳は、発表している論文[3]のなかで、「2.25億年前に超大陸パンゲアが次第に分離、現在の姿になるまでの過程で2億年前の三畳紀(Triassic)以後に存在したテチス海(Tethys)が地球史上の石油生成に極めて特異だった。中生代は二酸化炭素の濃度が今より10倍も高く、気温は10℃も高かった。つまり地球温暖化で、植物の光合成は極めて活発であった。しかもこのテチス海は赤道付近に停滞し、海水は攪拌されず長く酸欠状態が続いた。このため有機物は分解されず、石油熟成に好条件であったことが中東油田の始まりである。石油は探せばまだまだあるという単純な発想は地球史から見て正しくない。」と有限性を強調している。



無機成因論


石油「無機」由来説は、1940年代BP(ブリティッシュペトロリアム)の研究所内では、無機生成物であることが主要理論であったが、市場戦略的な理由で機密扱いにしていた。1870年代、元素の周期律表で知られるロシアの化学者メンデレーエフが唱えたのが始まりで、旧東側諸国では従来から定説とされていた学説である。ただし、旧西側諸国では、定説とされてきた石油「有機」由来説に真っ向から反対するものであったため長く顧みられることがなく、その後トーマス・ゴールドが取り上げたことで、西側諸国でも脚光を浴びることとなった。
天文物理学者であるゴールドの説く石油無機由来説は、「惑星が誕生する際には必ず大量の炭化水素が含まれる」「炭化水素は地球の内核で放射線の作用により発生する」「この炭化水素が惑星内部の高圧・高熱を受けて変質することで石油が生まれる」「炭化水素は岩石よりも軽いので地上を目指して浮上してくる」というものである。


無機成因論の根拠としては「石油の分布が生物の分布と明らかに異なる」「化石燃料では考えられないほどの超深度から原油がみつかる」「石油の組成が多くの地域でおおむね同一である」「ヘリウム、ウラン、水銀、ガリウム、ゲルマニウムなど、生物起源では説明できない成分が含まれている」などが挙げられる。
また、生物起源論が根拠としている、石油中に含まれる炭化水素の炭素同位体比を調べた結果、炭素数の少ない炭化水素ほど、質量の軽い炭素同位体を含む割合が多くなるという傾向は、地下から炭化水素が上昇する過程で、分子の熱運動により重い同位体が分離されたと説明することも可能だという。


この無機由来説に基づけば、一度涸れた油井もしばらく放置すると再び原油産出が可能となる現象を説明することができる。また超深度さえ掘削できれば、日本はもちろん世界中どこでも石油を採掘できる可能性があることになり、膨大な量の石油が消費されたとしても、掘削技術の問題さえ解決されれば枯渇する危険性はほぼ皆無であるとされている。



石油分解菌説


無精製でも内燃機関を動かす事が出来る程の世界的にもまれな軽質油を産出する静岡県の相良油田では、有機成因論とも無機成因論とも異なる第三の説が唱えられている。


1993年、京都大学大学院の今中忠行(現在:立命館大学生命科学部)は、研究室内の「無酸素実験装置」において、 相良油田から採取した石油分解菌「Oleomonas sagaranensis HD-1株」が通常状態では石油を分解する能力を持ちながら、 石油も酸素もない環境におかれると、細胞内に逆に原油を作り出すことを発見した。この際生成された石油は相良油田産の軽質油と性質が酷似しており、相良油田が形成された一因として唱えられているほか、今中忠行らはこの石油分解菌がメタンハイドレートに関係していると指摘した。


このHD-1株の研究が進めば、将来的には石油醸造プラントでの有機的な石油の生成が可能になるとも言われており、今後の研究が待たれるところである。



成分


石油の成分のほとんどは炭化水素であり、色々な炭化水素の混合物から構成されている。その他、硫黄化合物、窒素化合物、金属類も含まれている。工業的に有用な石油製品を作るためには、分留によって成分を分ける。精製することにより、天然ガス、ナフサ(ガソリン)、灯油、軽油、重油、潤滑油、アスファルトなどが製品として得られる。



天然ガス


天然ガスは沸点が30℃位までであり、常温よりも沸点が低いため、ガスとして分離する。主な構成成分は、メタン、エタン、プロパン、ブタン、ペンタンなど。



  • CH4 (メタン、 methane) - 沸点 -107℃

  • C2H6 (エタン、 ethane) - 沸点 -67℃

  • C3H8 (プロパン、 propane) - 沸点 -43℃

  • C4H10 (ブタン、 butane) - 沸点 -18℃



ナフサ


ナフサは沸点が30 - 200℃程度の炭化水素であり、粗製ガソリンとも呼ばれる。主成分は炭素数5 - 12のアルカンである。
炭素数5 - 7のナフサは、軽質ナフサと呼ばれ、透明で蒸発しやすく、溶媒やドライクリーニングの溶剤、あるいはその他の速乾性の製品に用いられる。
炭素数が6 - 12のナフサは、重質ナフサと呼ばれ、水素化精製、接触改質などを経てから配合調整されガソリンとして精製される。
ベンジンやホワイトガソリンはナフサから作られる石油製品である。



灯油・軽油


炭素数10 - 15の範囲の炭化水素からケロシンが作られジェット燃料に用いられる。炭素数10 - 20の範囲からディーゼル燃料(軽油)と灯油が精製される。



重油


沸点320℃以上の蒸留で船舶のエンジンなどに用いられる重油が精製される。これらの石油製品は常温で液体である。



残油


常圧蒸留で蒸留できない残油は、減圧蒸留(真空蒸留)する。潤滑油と半固体の油脂(ワセリンを含む)は、炭素数16から炭素数20の範囲である。


炭素数20以上の鎖状炭化水素は固体であり、パラフィンワックスを皮切りに、タール、アスファルトの順である。




常圧蒸留留分の名称と沸点(℃)を示す:




石油エーテル (petrol ether) :40 - 70℃ (溶媒用)


軽ガソリン (light petrol) :60 - 100℃ (自動車燃料)


重ガソリン (heavy petrol) :100 - 150℃ (自動車燃料)


軽ケロシン (light kerosene) :120 - 150℃ (家庭用溶媒・燃料)


ケロシン (kerosene):150 - 300℃ (ジェット燃料)


ガス油 (gas oil):250 - 350℃ (ディーゼル燃料/軽油/灯油)


潤滑油:> 300℃ (エンジン・オイル)

残留分:タール、アスファルト、残余燃料



公害・環境問題




歴史



19世紀まで


地下から湧く燃える水の存在は、古代から各地で知られていた。産地で燃料や照明に用いた例も多い。たとえば4世紀には中国で石油の採掘が行われたという記録がある。また1691年には現在も石油の生産が行われているルーマニアのモレニ油田から石油が採掘され、産出された石油は品質の点で他の油より良いとされていた。しかし、大量生産はずっと後のことであった。




オケマ(オクラホマ)の油井やぐら, 1922


米国では、1855年、アメリカ先住民が薬用にしていた黒色の油を精製したところ鯨油よりも照明に適していることが分かり油田開発がスタートした[4]。また1858年にはルノアール・エンジンも発明された。


需要が伸びるにつれ原油採掘の必要性が高まったところ、機械掘りの油井の出現が、石油生産の一大画期をなした。エドウィン・ドレーク(ドレーク大佐)が1859年8月にペンシルベニア州タイタスビルの近くのオイル・クリークで採掘を始めたのが世界最初と言われる。しかし、別のところでもっと早くあったとする説もある。19世紀後半には、アメリカ合衆国、ルーマニア、ロシアのコーカサス地方が石油の産地であった。


当時は車(内燃機関)の燃料としてアルコールが一般的で、フォードT型モデルは1ガロンのアルコールで34マイル走行し、全世界で1500万台を売り上げた。一方1863年、ジョン・D・ロックフェラーがオハイオ州クリーブランドで石油精製業に乗り出し、1870年、スタンダード石油を設立した。


ロックフェラーは石油から灯油を採った後に残るガソリンを産業廃棄物として夜陰に乗じて川に廃棄していたが、これを内燃機関の燃料として再利用することを思いついた。[要出典]そこへ1876年にドイツのニコラウス・オットーがガソリンで動作する内燃機関(ガソリンエンジン)の発明を、ゴットリープ・ダイムラーがそれを改良し、1885年にダイムラーによる特許が出される。同年、ドイツのカール・ベンツはダイムラーとは別にエンジンを改良した。しかしながら、アルコール燃料は燃焼によって水と酸素と二酸化炭素は排出するが、一酸化炭素や窒素化合物を出さないため、その点だけでもアルコール燃料の方が石油よりも内燃機関の燃料として優れていることに変わりはない。


同社は事業統合を重ね、1884年にはアメリカ合衆国全体の石油精製能力の77%、石油販売シェアは80-85%に達した。一方ロックフェラーらはアルコールの販売・製造の禁止を画策し、議会や禁酒運動団体等に介入し、1919年に禁酒法が成立する。欧州各国でも、20世紀初頭は禁酒法の成立が相次ぎ石油寡占に拍車をかけた。[要出典]


過日、あまりに巨大化したスタンダード石油に対し、世論の反発が起き、1890年に成立したシャーマン反トラスト法により、同社は34の会社に解体された。ただし、消滅したわけではなく、分割されただけである。スタンダード石油が前身となって、今日のエクソンモービル、シェブロンなどの旧7大メジャーができた。



第二次世界大戦まで


19世紀から20世紀半ばにかけて、生産だけでなく、消費側にも石油普及をうながす技術革新が続いた。内燃機関での利用である。19世紀末の自動車の商業実用化、20世紀初めの飛行機の発明は、ガソリンエンジンと切り離しては考えられない。船舶も重油を汽缶(ボイラー)の燃料にするようになった。


石油自体は珍しくないが、大量生産できる油田は少なく、発見が困難であったため、石油産地は地理的に偏った。戦車、軍用機、軍艦などの燃料でもあったことから、20世紀半ばから後半にかけて、石油は死活的な戦略資源となった。


20世紀前半には、ベネズエラやインドネシアが石油の輸出地に加わった。この当時、世界の石油生産はアメリカ、ソ連、そしてベネズエラが多く占めていた。その中でもアメリカは約70パーセントを占めていた。



第二次世界大戦後


第二次大戦後、石油の新たな用途として、既に戦前に登場した化学繊維やプラスチックが、あらゆる工業製品の素材として利用されるようになった。また、発電所の燃料としても石油が利用された。


戦後、中東に新たな大規模油田が相次いで発見された。中東は良質の優れた油田が多いだけでなく、人口が多くなく現地消費量が限られているため、今日まで世界最大の石油輸出地域となっている。


石油の探査には莫大な経費と高い技術が必要となるが、成功時の見返りもまた莫大である。必然的に石油産業では企業の巨大化が進んだ。独自に採掘する技術と資本を持たない国では、巨大資本を持った欧米の少数の石油会社に独占採掘権を売り渡した。これによって石油開発の集中化はさらに進み、石油メジャーと言われる巨大な多国籍企業が誕生した。石油の大量産出によって安価な石油はエネルギー源の主力となり、エネルギー革命と呼ばれるエネルギー源の変化が生まれた。


しかし1970年代に資源ナショナリズムが強まると、石油を国有化する国が相次いだ。1973年から1974年には、第四次中東戦争でアラブ石油輸出国機構がイスラエル支持国への石油輸出を削減する動きをみせ、オイルショックと世界的な不況をもたらした。


他にも北海やメキシコ湾など世界各地で石油が採掘されるようになると、石油の戦略性は低下していった。石油の重要性は低下していないが、供給はかつてほど脆弱ではない。しかし、その価格変動が世界の景気に与える影響は大きいものがある。



日本の石油事情



日米貿易は1853年の日米和親条約に始まったが、石油については、1879年にアメリカ人で商船J. A.トムソンの船長チャールズ・ロジャースが知人に頼まれ日本の物産を購入する際、新たな市場としての日本へ貨物として原油を精製した石油を届けている[5]


現在では、新潟県・秋田県の日本海沿岸、および北海道(勇払平野)などで原油が採掘されている。生産量は年間で63万キロリットル(2014年度)で、国内消費量全体に占める比率は0.3%に過ぎない[6]。現在 新たに釧路平野に原油が予測されており経済産業省は新たに鉱区を設定した。


一方で原油の輸入量は国内消費量全体の99.7%、1億9,104万キロリットル(2016年度)[7]である。輸入相手国は上位よりサウジアラビア、アラブ首長国連邦、カタール、イラン、クウェートなど中東地域からが全体の87%を占めている(2016年度)[7]



日本の石油会社


国際石油資本(メジャー)のような海外大手石油会社は、石油の探鉱、生産、輸送、精製、元売りまでを一貫して手がける垂直統合を行っているため、日本の石油会社も精製、元売り(これを下流事業という)のみから、上流事業(探鉱、開発、生産)を手がけるようになってきた。上流事業を専業とする日本の有力石油会社には国際石油開発帝石、石油資源開発、三井石油開発があるが、下流事業の有力会社としては以下のグループがある。



国内石油会社




  • JXTGホールディングス

    • JXTGエネルギー[8](ENEOS・Esso・Mobil・ゼネラル[9])国内最大手。2017年4月、JXエネルギーと米エクソンモービル系の東燃ゼネラル石油が合併して発足。



  • 出光興産(IDEMITSU)国内2番手。戦後、創業者の出光佐三により発展。長期間未上場だったが、2006年10月に東証一部に上場する。


  • コスモエネルギーホールディングス

    • コスモ石油[10](COSMO)国内3番手。1986年4月に丸善石油・大協石油・旧・コスモ石油が合併して発足。



  • 昭和シェル石油(Shell)国内4番手。1985年4月に昭和石油と英蘭ロイヤル・ダッチ・シェル系のシェル石油が合併して発足。


  • キグナス石油(KYGNUS)


  • 太陽石油(SOLATO)



日本の石油諸税


日本で消費される石油には多段階にわたってさまざまな税金がかかっている。これを石油諸税と言う。




  • 輸入段階(次の2税目が加算されて課税される)

    • 原油関税(1リットルあたり 0.17円)


    • 石油石炭税(1リットルあたり 2.04円)。




  • 製品段階(次の5種類の個別間接税がそれぞれかかる)


    • ガソリン:ガソリン税(1リットルあたり 53.8円) = 揮発油税(48.6円)+ 地方揮発油税(5.2円)


    • 軽油:軽油引取税(1リットルあたり 32.1円)


    • ジェット燃料:航空機燃料税(1リットルあたり 26.0円)


    • LPガス:石油ガス税(自動車用1リットルあたり 9.8円)




  • 販売段階

    • 消費税 8%がさらに加算される。(軽油引取税と航空機燃料税は消費税の対象外)



この結果、たとえばガソリン1リットルには、消費税を除いて約56円の税金がかかっている計算になる。


前記の各税金のうち軽油引取税だけが地方税で、それ以外の税金は国税である。石油諸税の年間税収額は、2004年(平成16年)度予算で約4兆8,641億円となっている。地方税である軽油引取税を除いた税収合計は、国税収入の約12%を占め、所得税、法人税、消費税に次ぐ第4位の税収規模になっている。また、消費税以外の石油諸税は目的税となっており、その84%が道路整備財源として使われている。そのほか石油対策、空港整備などに使用されている。



日本の石油輸入先


2016年度 19,104万kl(上位10位内の中東地域で87.2%)[7]



  • 1位 サウジアラビア 37.4%

  • 2位 アラブ首長国連邦 23.7%

  • 3位 カタール 8.7%

  • 4位 イラン 7.0%

  • 5位 クウェート 6.6%

  • 6位 ロシア 5.8%

  • 7位 メキシコ 2.7%

  • 8位 イラク 2.4%

  • 9位 インドネシア 1.4%

  • 10位 オマーン 1.4%



日本の石油備蓄


(2016年3月末現在)207日分(原油5.5億バレル相当)[11]



  • 国家備蓄 4,734万kl(製品換算)122日分

  • 民間備蓄 3,130万kl(製品換算)81日分

  • 産油国共同備蓄 134万kl(製品換算)4日分



アメリカの石油戦略備蓄


米国には2011年2月現在17.27億バレルの石油備蓄を持つ。この中には米国内油田で産出せずに備蓄指定しているものを含む。(日本5.5、ドイツ2.8、フランス1.8、オランダ1.4等だが、ロシア、中国などの備蓄量は不明)



可採量



石油の埋蔵量に関する将来予測は、その時の経済活動の状況に左右されており決して単純な自然科学的な根拠に基づいてなされてはいない。20世紀末からの可採量の増大した理由には、原油価格の上昇と技術の向上がある。1973年の第一次石油危機の時には多くの石油専門家がマスコミに登場して「あと30年で石油は枯渇する」とされていたが、2005年の段階でも「現在発見されている油田可採埋蔵量だけでも現在の消費量で割ればあと40年は供給できる」とされたように、可採量は毎年増大し続けた[12]



可採年数



可採年数(R/P)とは、ある年度において埋蔵が確認されている石油のうち、その時点での技術で採算の合うコストで採掘可能な埋蔵量(R)を、その年度の実際の生産量(P)で割った値である。この値の意味を誤って解釈し、「石油は後何年でなくなる」などと吹聴するものもいるが明確な誤りである。例えばBP統計によれば、1970年の可採年数は約35年であったが、2005年に石油が枯渇したという事実が存在しないことは明らかである。ちなみに2007年度末の価格での可採年数は41.6年であった。
正しくは1970年時点で「原油価格1バーレル2ドルで採掘できる石油は35年後に枯渇する」と言うべきで、実際に1バーレル2ドルで採掘できる石油は2005年には枯渇して 原油価格は2007年以降1バーレル100ドル前後で推移している。


例えば、バイオ油より石油価格が高騰し、地中に多くの石油が埋蔵される場合でも採掘コストが高く生産が成り立たなくなると可採埋蔵量なし、可採年数0、つまり、「枯渇」ということになる。


価格上昇


可採年数は、原油価格が上がると伸びるという特性がある。それは、原油価格が変化すると『採掘可能な埋蔵量』が変化するためである。以下に例を示す。


ある油田は1バレルあたり採掘コストが30ドルかかるとする。このとき、もし原油価格が1バレルあたり10ドルならば、この油田は採算に合わないため『採掘可能な埋蔵量』には含まれない。しかし、もし原油価格が1バレル50ドルに上昇すれば、この油田は充分採算に合うため『採掘可能な埋蔵量』に含まれることになる。

現在の採掘技術でコストを考えずに採掘を行えば、あと数百年分は埋蔵されているとも言われるが、石油を取り巻く事情は常に変化を重ねる。また、埋蔵量は、各国の自己申告であり、政治的な理由のかさ上げが何度も判明してきた。


人類が採掘可能な石油埋蔵量を究極可採埋蔵量という。1970年代にはこれは2兆バレルと考えられており、また、その時点での既発見の埋蔵量は1兆バレルと考えられていた。しかし、現在ではこれは3兆バレル(68年分)と考えられている[13]
需要は今後も拡大すると思われる石油だが、わざと供給をなるべく小さくして原油価格を上げようとしているのでは無いかという意見も聞かれる。



消費量の増大


R/Pは「その時点での消費量が、増えずに永遠に続く」と言う前提の計算であることに留意しなければならない。
つまり今世紀初頭、自動車人口は先進国と一部共産圏で10億人ほどであったが、中国13億人、インド12億人、東南アジア5億人での自動車の普及のために、今世紀中盤には自動車人口は35億人に増える。つまり掘り取られる速度が3.5倍にまで早くなるのに、永遠に中国人やインド人や東南アジアの人々が自動車に乗らない前提で計算しているR/Pは需要増大局面では、予想されたより早く枯渇する。


このようなR/Pの指標としての欠陥から、最近はR/Pよりピーク理論で事実上の資源持続期間を表示することが多い。(石油ピーク参照)



採油技術の向上


従来の採油技術は単純に油層の圧力で自噴させるかポンプで汲み上げるだけであり、地下に存在する原油の内の容易に出てくるものだけが得られるに過ぎなかった。この「一次回収」と呼ばれる方法では地下に存在する原油の20-40%しか得られない。しかし、採油技術が向上し「二次回収」「三次回収」と呼ばれる技術で場合により100%に近い回収が行なえるようになっている。


地下油田の内部状態も三次元や四次元地震探鉱技術によって立体的に判別出来るようになり、取り残しの原油が見通せるようになっている。


「傾斜掘り」や「水平掘り」と呼ばれる自由な方向に掘り進める技術や地中で分岐させる技術の登場によって、原油が存在する地層を縫うように掘り進める事が出来るようになっている。


また、従来は採掘が不可能とされていた大深度地下の油層や水深2000m以上の深海油田や極地での採掘が可能になっており、油田探査の対象地域も拡大している[12]


詳しくは油井を参照。



統計



1日あたり原油生産量


近年、アメリカ合衆国が生産量を伸ばしている。


2016年 英BP[14](単位 万バレル)


全世界 9215.0(100.0%)


中東 3178.9(34.5%)



  1. アメリカ合衆国  1235.4(13.4%)

  2. サウジアラビア  1234.9(13.4%)

  3. ロシア  1122.7(12.2%)

  4. イラン  460.0(5.0%)

  5. イラク   446.5(4.8%)

  6. カナダ  446.0(4.8%)

  7. アラブ首長国連邦 407.3(4.4%)

  8. 中華人民共和国  399.9(4.3%)

  9. クウェート  315.1(3.4%)

  10. ブラジル 260.5(2.8%)



確認埋蔵量


2010年米エネルギー情報庁(単位 億バレル)


  • 全世界13,542


  1. サウジ 2624

  2. カナダ 1752

  3. イラン 1376

  4. イラク 1150

  5. クウェート1040

  6. ベネズエラ994

  7. UAE 978

  8. ロシア 600

  9. リビア 443

  10. ナイジェリア 372

  11. カザフスタン 300

  12. カタール 254

  13. 中国 204

  14. 米国 191

  15. ブラジル 128

  16. アルジェリア 122

  17. メキシコ 104


2007年 Oil and Gas Journal



  1. サウジアラビア2598

  2. イラン 1363

  3. イラク 1150

  4. クウェート990

  5. ロシア 600

  6. アラブ首長国連邦 922

  7. ベネズエラ 800

  8. ナイジェリア362

  9. リビア 415

  10. カザフスタン300

  11. アメリカ合衆国218

  12. 中国160

  13. カタール152



主な産油国と油田一覧




脚注




  1. ^ Wikisource reference 沈括. 『夢渓筆談』巻二十四 雑誌一. - ウィキソース. :鄜・延境内有石油、旧説「高奴県出脂水」、即此也。


  2. ^ 甘利重治・山岡博士著 河村幹夫監修 『石油価格はどう決まるか』 時事通信社 2007年12月20日第一刷発行 ISBN 978-4-7887-0768-9


  3. ^ 石井吉徳「高く乏しい石油時代が来る」


  4. ^ 『歴史学事典13』弘文堂、2006年、372頁


  5. ^ 『Charles Jabez Rogers, Captain』、メイン州海事博物館。


  6. ^ 石油連盟 今日の石油産業データ集2016 12頁

  7. ^ abc資源エネルギー庁 資源・エネルギー統計年報 平成28年 92頁


  8. ^ JXTGエネルギーはベトナム・マレーシア・パプアニューギニア・イギリスで石油開発も行っている。


  9. ^ 旧・東燃ゼネラル石油で使用されていたEsso・Mobil・ゼネラルの3ブランドは2019年度をもって廃止、順次ENEOSに統一される。


  10. ^ コスモ石油はアブダビやカタールで石油開発も行っている。


  11. ^ 独立行政法人 石油天然ガス・金属鉱物資源機構 基礎情報:備蓄データ

  12. ^ ab藤和彦著 『石油を読む』 日本経済新聞社 日経文庫 2005年2月15日1版1刷 ISBN 4-532-11056-4


  13. ^ 石鉱連資源評価スタディ2007年 (世界の石油・天然ガス等の資源に関する2005年末における評価)2007年11月石油鉱業連盟発行


  14. ^ BP Statistical Review of World Energy 2017 14頁



参考文献




  • 貝原益軒『大和本草』巻之三 (PDF) 、宝永6年(1709年)。 中村学園大学・短期大学部図書館「電子図書館貝原益軒データ」(2010年7月閲覧)。


  • 鈴木牧之・撰、京山人百樹・刪定『北越雪譜』初編、天保8年(1835年)。岡田武松・校訂『北越雪譜』、岩波書店(岩波文庫)、改版1978年(初版1936年)、ISBN 4-00-302261-0。

  • 瀬木耿太郎『石油を支配する者』(岩波新書、1988年)

  • 藤和彦『石油を読む』(日経文庫、2005年)


  • 正井泰夫『今がわかる 時代がわかる 世界地図』(成美堂出版、2007年)



関連項目



  • 化石燃料

  • 石油精製

  • 油田

  • 石油化学

  • 石油製品

  • 石油燃料

  • ガソリン

  • バレル

  • 国際石油資本

  • 石油連盟

  • 石油流出

  • 古生物

  • 原油価格

  • 石油需給適正化法

  • 石油ピーク

  • 石油備蓄

  • 石油の備蓄の確保等に関する法律

  • オイルマネー

  • もったいない学会

  • シェールオイル

  • 逆オイルショック



外部リンク




  • 石油化学工業会 石油化学用語辞典あり

  • 石油情報センター

  • 石油天然ガス・金属鉱物資源機構

  • 石油技術協会

  • 石油鉱業連盟


  • 石油天然ガスの起源〜無機成因説は成り立つか〜(PDF)

  • Abiotic Oil: Science or Politics?(英文)


  • 日本の石油情勢(2007年6月 経済局経済安全保障課) (PDF)








647xar,msztQ3xe R eb2
YFUhRMrZ8tc5a73qwG,buc PdrTf1nMKeS7BAd167YhQJb

Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅