Multivariable Limit for Some Function












0












$begingroup$


I am trying to compute the following limit and am trying to determine a way to compute



$$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}.$$



The equation "blows up" when $(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)$.



$$lim_{(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)} f(mu _1,mu _2,mu _3,mu_4)$$



I tried using L'Hopital's rule, but the problem is that it does not apply to multivariable calculus.



Any direction would be greatly appreciated...










share|cite|improve this question











$endgroup$












  • $begingroup$
    It doesn't make sense for a $4$-tuple to converge to $1.$
    $endgroup$
    – zhw.
    Jan 9 at 23:42










  • $begingroup$
    Ok - I am unclear of the notation I should use, but each of $mu_i$ approaches 1
    $endgroup$
    – PiE
    Jan 9 at 23:44










  • $begingroup$
    What is $lambda?$
    $endgroup$
    – zhw.
    Jan 9 at 23:47










  • $begingroup$
    It's just a constant > 0 and a real number
    $endgroup$
    – PiE
    Jan 9 at 23:54












  • $begingroup$
    If $lambda>0$, then the only problem at $(1,1,1,1)$ is with $(mu_2-mu_1)$ in the denominator. So the limit can’t exist (even as an infinite limit) since it would be $pminfty$ depending on the sign of that difference during approach. And, worse, if $mu_2=0$ or $mu_3=0$ during approach, the limit could be $0$.
    $endgroup$
    – MPW
    Jan 9 at 23:59


















0












$begingroup$


I am trying to compute the following limit and am trying to determine a way to compute



$$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}.$$



The equation "blows up" when $(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)$.



$$lim_{(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)} f(mu _1,mu _2,mu _3,mu_4)$$



I tried using L'Hopital's rule, but the problem is that it does not apply to multivariable calculus.



Any direction would be greatly appreciated...










share|cite|improve this question











$endgroup$












  • $begingroup$
    It doesn't make sense for a $4$-tuple to converge to $1.$
    $endgroup$
    – zhw.
    Jan 9 at 23:42










  • $begingroup$
    Ok - I am unclear of the notation I should use, but each of $mu_i$ approaches 1
    $endgroup$
    – PiE
    Jan 9 at 23:44










  • $begingroup$
    What is $lambda?$
    $endgroup$
    – zhw.
    Jan 9 at 23:47










  • $begingroup$
    It's just a constant > 0 and a real number
    $endgroup$
    – PiE
    Jan 9 at 23:54












  • $begingroup$
    If $lambda>0$, then the only problem at $(1,1,1,1)$ is with $(mu_2-mu_1)$ in the denominator. So the limit can’t exist (even as an infinite limit) since it would be $pminfty$ depending on the sign of that difference during approach. And, worse, if $mu_2=0$ or $mu_3=0$ during approach, the limit could be $0$.
    $endgroup$
    – MPW
    Jan 9 at 23:59
















0












0








0





$begingroup$


I am trying to compute the following limit and am trying to determine a way to compute



$$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}.$$



The equation "blows up" when $(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)$.



$$lim_{(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)} f(mu _1,mu _2,mu _3,mu_4)$$



I tried using L'Hopital's rule, but the problem is that it does not apply to multivariable calculus.



Any direction would be greatly appreciated...










share|cite|improve this question











$endgroup$




I am trying to compute the following limit and am trying to determine a way to compute



$$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}.$$



The equation "blows up" when $(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)$.



$$lim_{(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)} f(mu _1,mu _2,mu _3,mu_4)$$



I tried using L'Hopital's rule, but the problem is that it does not apply to multivariable calculus.



Any direction would be greatly appreciated...







calculus limits multivariable-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 9 at 23:45







PiE

















asked Jan 9 at 23:40









PiEPiE

610411




610411












  • $begingroup$
    It doesn't make sense for a $4$-tuple to converge to $1.$
    $endgroup$
    – zhw.
    Jan 9 at 23:42










  • $begingroup$
    Ok - I am unclear of the notation I should use, but each of $mu_i$ approaches 1
    $endgroup$
    – PiE
    Jan 9 at 23:44










  • $begingroup$
    What is $lambda?$
    $endgroup$
    – zhw.
    Jan 9 at 23:47










  • $begingroup$
    It's just a constant > 0 and a real number
    $endgroup$
    – PiE
    Jan 9 at 23:54












  • $begingroup$
    If $lambda>0$, then the only problem at $(1,1,1,1)$ is with $(mu_2-mu_1)$ in the denominator. So the limit can’t exist (even as an infinite limit) since it would be $pminfty$ depending on the sign of that difference during approach. And, worse, if $mu_2=0$ or $mu_3=0$ during approach, the limit could be $0$.
    $endgroup$
    – MPW
    Jan 9 at 23:59




















  • $begingroup$
    It doesn't make sense for a $4$-tuple to converge to $1.$
    $endgroup$
    – zhw.
    Jan 9 at 23:42










  • $begingroup$
    Ok - I am unclear of the notation I should use, but each of $mu_i$ approaches 1
    $endgroup$
    – PiE
    Jan 9 at 23:44










  • $begingroup$
    What is $lambda?$
    $endgroup$
    – zhw.
    Jan 9 at 23:47










  • $begingroup$
    It's just a constant > 0 and a real number
    $endgroup$
    – PiE
    Jan 9 at 23:54












  • $begingroup$
    If $lambda>0$, then the only problem at $(1,1,1,1)$ is with $(mu_2-mu_1)$ in the denominator. So the limit can’t exist (even as an infinite limit) since it would be $pminfty$ depending on the sign of that difference during approach. And, worse, if $mu_2=0$ or $mu_3=0$ during approach, the limit could be $0$.
    $endgroup$
    – MPW
    Jan 9 at 23:59


















$begingroup$
It doesn't make sense for a $4$-tuple to converge to $1.$
$endgroup$
– zhw.
Jan 9 at 23:42




$begingroup$
It doesn't make sense for a $4$-tuple to converge to $1.$
$endgroup$
– zhw.
Jan 9 at 23:42












$begingroup$
Ok - I am unclear of the notation I should use, but each of $mu_i$ approaches 1
$endgroup$
– PiE
Jan 9 at 23:44




$begingroup$
Ok - I am unclear of the notation I should use, but each of $mu_i$ approaches 1
$endgroup$
– PiE
Jan 9 at 23:44












$begingroup$
What is $lambda?$
$endgroup$
– zhw.
Jan 9 at 23:47




$begingroup$
What is $lambda?$
$endgroup$
– zhw.
Jan 9 at 23:47












$begingroup$
It's just a constant > 0 and a real number
$endgroup$
– PiE
Jan 9 at 23:54






$begingroup$
It's just a constant > 0 and a real number
$endgroup$
– PiE
Jan 9 at 23:54














$begingroup$
If $lambda>0$, then the only problem at $(1,1,1,1)$ is with $(mu_2-mu_1)$ in the denominator. So the limit can’t exist (even as an infinite limit) since it would be $pminfty$ depending on the sign of that difference during approach. And, worse, if $mu_2=0$ or $mu_3=0$ during approach, the limit could be $0$.
$endgroup$
– MPW
Jan 9 at 23:59






$begingroup$
If $lambda>0$, then the only problem at $(1,1,1,1)$ is with $(mu_2-mu_1)$ in the denominator. So the limit can’t exist (even as an infinite limit) since it would be $pminfty$ depending on the sign of that difference during approach. And, worse, if $mu_2=0$ or $mu_3=0$ during approach, the limit could be $0$.
$endgroup$
– MPW
Jan 9 at 23:59












1 Answer
1






active

oldest

votes


















1












$begingroup$

$$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}$$ When the $mu_i to 1$, this reduces to
$$frac {lambda}{left(mu _2-mu _1right)(lambda +1) left(lambda ^2+lambda +1right) }$$ and then $cdots$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068068%2fmultivariable-limit-for-some-function%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    $$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}$$ When the $mu_i to 1$, this reduces to
    $$frac {lambda}{left(mu _2-mu _1right)(lambda +1) left(lambda ^2+lambda +1right) }$$ and then $cdots$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      $$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}$$ When the $mu_i to 1$, this reduces to
      $$frac {lambda}{left(mu _2-mu _1right)(lambda +1) left(lambda ^2+lambda +1right) }$$ and then $cdots$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        $$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}$$ When the $mu_i to 1$, this reduces to
        $$frac {lambda}{left(mu _2-mu _1right)(lambda +1) left(lambda ^2+lambda +1right) }$$ and then $cdots$






        share|cite|improve this answer









        $endgroup$



        $$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}$$ When the $mu_i to 1$, this reduces to
        $$frac {lambda}{left(mu _2-mu _1right)(lambda +1) left(lambda ^2+lambda +1right) }$$ and then $cdots$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 10 at 6:43









        Claude LeiboviciClaude Leibovici

        123k1157134




        123k1157134






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068068%2fmultivariable-limit-for-some-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            張江高科駅