Multivariable Limit for Some Function
$begingroup$
I am trying to compute the following limit and am trying to determine a way to compute
$$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}.$$
The equation "blows up" when $(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)$.
$$lim_{(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)} f(mu _1,mu _2,mu _3,mu_4)$$
I tried using L'Hopital's rule, but the problem is that it does not apply to multivariable calculus.
Any direction would be greatly appreciated...
calculus limits multivariable-calculus
$endgroup$
|
show 1 more comment
$begingroup$
I am trying to compute the following limit and am trying to determine a way to compute
$$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}.$$
The equation "blows up" when $(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)$.
$$lim_{(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)} f(mu _1,mu _2,mu _3,mu_4)$$
I tried using L'Hopital's rule, but the problem is that it does not apply to multivariable calculus.
Any direction would be greatly appreciated...
calculus limits multivariable-calculus
$endgroup$
$begingroup$
It doesn't make sense for a $4$-tuple to converge to $1.$
$endgroup$
– zhw.
Jan 9 at 23:42
$begingroup$
Ok - I am unclear of the notation I should use, but each of $mu_i$ approaches 1
$endgroup$
– PiE
Jan 9 at 23:44
$begingroup$
What is $lambda?$
$endgroup$
– zhw.
Jan 9 at 23:47
$begingroup$
It's just a constant > 0 and a real number
$endgroup$
– PiE
Jan 9 at 23:54
$begingroup$
If $lambda>0$, then the only problem at $(1,1,1,1)$ is with $(mu_2-mu_1)$ in the denominator. So the limit can’t exist (even as an infinite limit) since it would be $pminfty$ depending on the sign of that difference during approach. And, worse, if $mu_2=0$ or $mu_3=0$ during approach, the limit could be $0$.
$endgroup$
– MPW
Jan 9 at 23:59
|
show 1 more comment
$begingroup$
I am trying to compute the following limit and am trying to determine a way to compute
$$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}.$$
The equation "blows up" when $(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)$.
$$lim_{(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)} f(mu _1,mu _2,mu _3,mu_4)$$
I tried using L'Hopital's rule, but the problem is that it does not apply to multivariable calculus.
Any direction would be greatly appreciated...
calculus limits multivariable-calculus
$endgroup$
I am trying to compute the following limit and am trying to determine a way to compute
$$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}.$$
The equation "blows up" when $(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)$.
$$lim_{(mu _1,mu _2,mu _3,mu_4)rightarrow (1 ,1,1,1)} f(mu _1,mu _2,mu _3,mu_4)$$
I tried using L'Hopital's rule, but the problem is that it does not apply to multivariable calculus.
Any direction would be greatly appreciated...
calculus limits multivariable-calculus
calculus limits multivariable-calculus
edited Jan 9 at 23:45
PiE
asked Jan 9 at 23:40
PiEPiE
610411
610411
$begingroup$
It doesn't make sense for a $4$-tuple to converge to $1.$
$endgroup$
– zhw.
Jan 9 at 23:42
$begingroup$
Ok - I am unclear of the notation I should use, but each of $mu_i$ approaches 1
$endgroup$
– PiE
Jan 9 at 23:44
$begingroup$
What is $lambda?$
$endgroup$
– zhw.
Jan 9 at 23:47
$begingroup$
It's just a constant > 0 and a real number
$endgroup$
– PiE
Jan 9 at 23:54
$begingroup$
If $lambda>0$, then the only problem at $(1,1,1,1)$ is with $(mu_2-mu_1)$ in the denominator. So the limit can’t exist (even as an infinite limit) since it would be $pminfty$ depending on the sign of that difference during approach. And, worse, if $mu_2=0$ or $mu_3=0$ during approach, the limit could be $0$.
$endgroup$
– MPW
Jan 9 at 23:59
|
show 1 more comment
$begingroup$
It doesn't make sense for a $4$-tuple to converge to $1.$
$endgroup$
– zhw.
Jan 9 at 23:42
$begingroup$
Ok - I am unclear of the notation I should use, but each of $mu_i$ approaches 1
$endgroup$
– PiE
Jan 9 at 23:44
$begingroup$
What is $lambda?$
$endgroup$
– zhw.
Jan 9 at 23:47
$begingroup$
It's just a constant > 0 and a real number
$endgroup$
– PiE
Jan 9 at 23:54
$begingroup$
If $lambda>0$, then the only problem at $(1,1,1,1)$ is with $(mu_2-mu_1)$ in the denominator. So the limit can’t exist (even as an infinite limit) since it would be $pminfty$ depending on the sign of that difference during approach. And, worse, if $mu_2=0$ or $mu_3=0$ during approach, the limit could be $0$.
$endgroup$
– MPW
Jan 9 at 23:59
$begingroup$
It doesn't make sense for a $4$-tuple to converge to $1.$
$endgroup$
– zhw.
Jan 9 at 23:42
$begingroup$
It doesn't make sense for a $4$-tuple to converge to $1.$
$endgroup$
– zhw.
Jan 9 at 23:42
$begingroup$
Ok - I am unclear of the notation I should use, but each of $mu_i$ approaches 1
$endgroup$
– PiE
Jan 9 at 23:44
$begingroup$
Ok - I am unclear of the notation I should use, but each of $mu_i$ approaches 1
$endgroup$
– PiE
Jan 9 at 23:44
$begingroup$
What is $lambda?$
$endgroup$
– zhw.
Jan 9 at 23:47
$begingroup$
What is $lambda?$
$endgroup$
– zhw.
Jan 9 at 23:47
$begingroup$
It's just a constant > 0 and a real number
$endgroup$
– PiE
Jan 9 at 23:54
$begingroup$
It's just a constant > 0 and a real number
$endgroup$
– PiE
Jan 9 at 23:54
$begingroup$
If $lambda>0$, then the only problem at $(1,1,1,1)$ is with $(mu_2-mu_1)$ in the denominator. So the limit can’t exist (even as an infinite limit) since it would be $pminfty$ depending on the sign of that difference during approach. And, worse, if $mu_2=0$ or $mu_3=0$ during approach, the limit could be $0$.
$endgroup$
– MPW
Jan 9 at 23:59
$begingroup$
If $lambda>0$, then the only problem at $(1,1,1,1)$ is with $(mu_2-mu_1)$ in the denominator. So the limit can’t exist (even as an infinite limit) since it would be $pminfty$ depending on the sign of that difference during approach. And, worse, if $mu_2=0$ or $mu_3=0$ during approach, the limit could be $0$.
$endgroup$
– MPW
Jan 9 at 23:59
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
$$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}$$ When the $mu_i to 1$, this reduces to
$$frac {lambda}{left(mu _2-mu _1right)(lambda +1) left(lambda ^2+lambda +1right) }$$ and then $cdots$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068068%2fmultivariable-limit-for-some-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}$$ When the $mu_i to 1$, this reduces to
$$frac {lambda}{left(mu _2-mu _1right)(lambda +1) left(lambda ^2+lambda +1right) }$$ and then $cdots$
$endgroup$
add a comment |
$begingroup$
$$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}$$ When the $mu_i to 1$, this reduces to
$$frac {lambda}{left(mu _2-mu _1right)(lambda +1) left(lambda ^2+lambda +1right) }$$ and then $cdots$
$endgroup$
add a comment |
$begingroup$
$$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}$$ When the $mu_i to 1$, this reduces to
$$frac {lambda}{left(mu _2-mu _1right)(lambda +1) left(lambda ^2+lambda +1right) }$$ and then $cdots$
$endgroup$
$$f(mu _1,mu _2,mu _3,mu_4)=frac{lambda mu _2 mu _3}{left(mu _2-mu _1right) left(lambda ^3+mu _3 left(2 lambda ^2+mu _2 left(2 lambda +mu _1right)right)right)}$$ When the $mu_i to 1$, this reduces to
$$frac {lambda}{left(mu _2-mu _1right)(lambda +1) left(lambda ^2+lambda +1right) }$$ and then $cdots$
answered Jan 10 at 6:43
Claude LeiboviciClaude Leibovici
123k1157134
123k1157134
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068068%2fmultivariable-limit-for-some-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It doesn't make sense for a $4$-tuple to converge to $1.$
$endgroup$
– zhw.
Jan 9 at 23:42
$begingroup$
Ok - I am unclear of the notation I should use, but each of $mu_i$ approaches 1
$endgroup$
– PiE
Jan 9 at 23:44
$begingroup$
What is $lambda?$
$endgroup$
– zhw.
Jan 9 at 23:47
$begingroup$
It's just a constant > 0 and a real number
$endgroup$
– PiE
Jan 9 at 23:54
$begingroup$
If $lambda>0$, then the only problem at $(1,1,1,1)$ is with $(mu_2-mu_1)$ in the denominator. So the limit can’t exist (even as an infinite limit) since it would be $pminfty$ depending on the sign of that difference during approach. And, worse, if $mu_2=0$ or $mu_3=0$ during approach, the limit could be $0$.
$endgroup$
– MPW
Jan 9 at 23:59