Octahedra with four equilateral faces
Let $A_1, A_2, A_3, A'_1, A'_2, A'_3$ be the vertices of a (not-necessarily convex) octahedron; here $X'$ is the vertex not on an edge with $X$. Suppose that the four non-adjacent triangular faces $A_1 A_2 A_3$, $A_1 A'_2 A'_3$,$A'_1 A_2 A'_3$,$A'_1 A'_2 A_3$ are equilateral with sides of lengths $x_0, x_1, x_2, x_3$.
I am interested in knowing the conditions on $x_0,x_1,x_2,x_3$ that must be satisfied for such a configuration to exist; and how unique the configuration is. This is a preliminary step to understanding this Question on Octahedra
and the answer by @Blue.
Clearly it is necessary that $x_i>0$ for each $i$; and by using the triangle inequality on the other four faces, that $x_i+x_j>x_k$ for every 3-set ${i,j,k}subset {0,1,2,3}$.
Question 1: are these conditions sufficient for existence? I think so, but have only a hand-waving argument and would like something better.
It seems to me that if such a configuration exists for some $x_0,x_1,x_2,x_3$ then in general if we fix $A_2, A_3, A'_1, A'_2, A'_3$ there are two points $A_1$ which satisfy the right conditions, giving a convex octahedron and a non-convex one. Again I can only wave my hands, and my intuition may be wrong. So,
Question 2: what can be proved about uniqueness?
Lastly, to get some feeling for which $(x_0,x_1, x_2,x_3)$ yield an octahedron, I would like to understand their geometry.
Question 3: Describe geometrically the (subset of) the solid bounded by
begin{align*}
x_0+x_1+x_2+x_3&=1;&\
x_i&=0, &i=0,dots,3; \
x_i+x_j&=x_k &textrm{ for every 3-set } {i,j,k}subset {0,1,2,3}
end{align*}
which yield solutions.
geometry polyhedra
add a comment |
Let $A_1, A_2, A_3, A'_1, A'_2, A'_3$ be the vertices of a (not-necessarily convex) octahedron; here $X'$ is the vertex not on an edge with $X$. Suppose that the four non-adjacent triangular faces $A_1 A_2 A_3$, $A_1 A'_2 A'_3$,$A'_1 A_2 A'_3$,$A'_1 A'_2 A_3$ are equilateral with sides of lengths $x_0, x_1, x_2, x_3$.
I am interested in knowing the conditions on $x_0,x_1,x_2,x_3$ that must be satisfied for such a configuration to exist; and how unique the configuration is. This is a preliminary step to understanding this Question on Octahedra
and the answer by @Blue.
Clearly it is necessary that $x_i>0$ for each $i$; and by using the triangle inequality on the other four faces, that $x_i+x_j>x_k$ for every 3-set ${i,j,k}subset {0,1,2,3}$.
Question 1: are these conditions sufficient for existence? I think so, but have only a hand-waving argument and would like something better.
It seems to me that if such a configuration exists for some $x_0,x_1,x_2,x_3$ then in general if we fix $A_2, A_3, A'_1, A'_2, A'_3$ there are two points $A_1$ which satisfy the right conditions, giving a convex octahedron and a non-convex one. Again I can only wave my hands, and my intuition may be wrong. So,
Question 2: what can be proved about uniqueness?
Lastly, to get some feeling for which $(x_0,x_1, x_2,x_3)$ yield an octahedron, I would like to understand their geometry.
Question 3: Describe geometrically the (subset of) the solid bounded by
begin{align*}
x_0+x_1+x_2+x_3&=1;&\
x_i&=0, &i=0,dots,3; \
x_i+x_j&=x_k &textrm{ for every 3-set } {i,j,k}subset {0,1,2,3}
end{align*}
which yield solutions.
geometry polyhedra
add a comment |
Let $A_1, A_2, A_3, A'_1, A'_2, A'_3$ be the vertices of a (not-necessarily convex) octahedron; here $X'$ is the vertex not on an edge with $X$. Suppose that the four non-adjacent triangular faces $A_1 A_2 A_3$, $A_1 A'_2 A'_3$,$A'_1 A_2 A'_3$,$A'_1 A'_2 A_3$ are equilateral with sides of lengths $x_0, x_1, x_2, x_3$.
I am interested in knowing the conditions on $x_0,x_1,x_2,x_3$ that must be satisfied for such a configuration to exist; and how unique the configuration is. This is a preliminary step to understanding this Question on Octahedra
and the answer by @Blue.
Clearly it is necessary that $x_i>0$ for each $i$; and by using the triangle inequality on the other four faces, that $x_i+x_j>x_k$ for every 3-set ${i,j,k}subset {0,1,2,3}$.
Question 1: are these conditions sufficient for existence? I think so, but have only a hand-waving argument and would like something better.
It seems to me that if such a configuration exists for some $x_0,x_1,x_2,x_3$ then in general if we fix $A_2, A_3, A'_1, A'_2, A'_3$ there are two points $A_1$ which satisfy the right conditions, giving a convex octahedron and a non-convex one. Again I can only wave my hands, and my intuition may be wrong. So,
Question 2: what can be proved about uniqueness?
Lastly, to get some feeling for which $(x_0,x_1, x_2,x_3)$ yield an octahedron, I would like to understand their geometry.
Question 3: Describe geometrically the (subset of) the solid bounded by
begin{align*}
x_0+x_1+x_2+x_3&=1;&\
x_i&=0, &i=0,dots,3; \
x_i+x_j&=x_k &textrm{ for every 3-set } {i,j,k}subset {0,1,2,3}
end{align*}
which yield solutions.
geometry polyhedra
Let $A_1, A_2, A_3, A'_1, A'_2, A'_3$ be the vertices of a (not-necessarily convex) octahedron; here $X'$ is the vertex not on an edge with $X$. Suppose that the four non-adjacent triangular faces $A_1 A_2 A_3$, $A_1 A'_2 A'_3$,$A'_1 A_2 A'_3$,$A'_1 A'_2 A_3$ are equilateral with sides of lengths $x_0, x_1, x_2, x_3$.
I am interested in knowing the conditions on $x_0,x_1,x_2,x_3$ that must be satisfied for such a configuration to exist; and how unique the configuration is. This is a preliminary step to understanding this Question on Octahedra
and the answer by @Blue.
Clearly it is necessary that $x_i>0$ for each $i$; and by using the triangle inequality on the other four faces, that $x_i+x_j>x_k$ for every 3-set ${i,j,k}subset {0,1,2,3}$.
Question 1: are these conditions sufficient for existence? I think so, but have only a hand-waving argument and would like something better.
It seems to me that if such a configuration exists for some $x_0,x_1,x_2,x_3$ then in general if we fix $A_2, A_3, A'_1, A'_2, A'_3$ there are two points $A_1$ which satisfy the right conditions, giving a convex octahedron and a non-convex one. Again I can only wave my hands, and my intuition may be wrong. So,
Question 2: what can be proved about uniqueness?
Lastly, to get some feeling for which $(x_0,x_1, x_2,x_3)$ yield an octahedron, I would like to understand their geometry.
Question 3: Describe geometrically the (subset of) the solid bounded by
begin{align*}
x_0+x_1+x_2+x_3&=1;&\
x_i&=0, &i=0,dots,3; \
x_i+x_j&=x_k &textrm{ for every 3-set } {i,j,k}subset {0,1,2,3}
end{align*}
which yield solutions.
geometry polyhedra
geometry polyhedra
asked Dec 26 at 13:16
ancientmathematician
4,4581413
4,4581413
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052935%2foctahedra-with-four-equilateral-faces%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052935%2foctahedra-with-four-equilateral-faces%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown