How to do integral $ int_0^{infty} left(frac{a}{(e^{ax}-1)}-frac{b}{(e^{bx}-1)}right)mathrm{d}x$?
$begingroup$
I met this integral:
$$
int_0^{infty} left(frac{a}{(e^{ax}-1)}-frac{b}{(e^{bx}-1)}right)mathrm{d}x, text{ where }
,,0<a<b .
$$
It is a problem that showed up on my final exam of the lesson Mathematics I. Would anyone help me calculate this integral? Thanks.
definite-integrals
$endgroup$
add a comment |
$begingroup$
I met this integral:
$$
int_0^{infty} left(frac{a}{(e^{ax}-1)}-frac{b}{(e^{bx}-1)}right)mathrm{d}x, text{ where }
,,0<a<b .
$$
It is a problem that showed up on my final exam of the lesson Mathematics I. Would anyone help me calculate this integral? Thanks.
definite-integrals
$endgroup$
$begingroup$
Two ideas : maybe it's possible to use Frulanni's integrals ? And what about to represent $frac{1}{e^{ax} - 1} = sum $ and integrate under the sum sign ?
$endgroup$
– openspace
Jan 10 at 12:21
$begingroup$
I think it must be zero
$endgroup$
– Aditya Garg
Jan 10 at 12:25
$begingroup$
For the left side make the substitution $u=e^{ax}-1$ and for the right side make the substitution $v=e^{bx}-1$ and see where this leads you
$endgroup$
– Henry Lee
Jan 10 at 12:42
add a comment |
$begingroup$
I met this integral:
$$
int_0^{infty} left(frac{a}{(e^{ax}-1)}-frac{b}{(e^{bx}-1)}right)mathrm{d}x, text{ where }
,,0<a<b .
$$
It is a problem that showed up on my final exam of the lesson Mathematics I. Would anyone help me calculate this integral? Thanks.
definite-integrals
$endgroup$
I met this integral:
$$
int_0^{infty} left(frac{a}{(e^{ax}-1)}-frac{b}{(e^{bx}-1)}right)mathrm{d}x, text{ where }
,,0<a<b .
$$
It is a problem that showed up on my final exam of the lesson Mathematics I. Would anyone help me calculate this integral? Thanks.
definite-integrals
definite-integrals
edited Jan 11 at 2:02
Thomas Shelby
3,7142525
3,7142525
asked Jan 10 at 12:19
Zhu HuanhuanZhu Huanhuan
34616
34616
$begingroup$
Two ideas : maybe it's possible to use Frulanni's integrals ? And what about to represent $frac{1}{e^{ax} - 1} = sum $ and integrate under the sum sign ?
$endgroup$
– openspace
Jan 10 at 12:21
$begingroup$
I think it must be zero
$endgroup$
– Aditya Garg
Jan 10 at 12:25
$begingroup$
For the left side make the substitution $u=e^{ax}-1$ and for the right side make the substitution $v=e^{bx}-1$ and see where this leads you
$endgroup$
– Henry Lee
Jan 10 at 12:42
add a comment |
$begingroup$
Two ideas : maybe it's possible to use Frulanni's integrals ? And what about to represent $frac{1}{e^{ax} - 1} = sum $ and integrate under the sum sign ?
$endgroup$
– openspace
Jan 10 at 12:21
$begingroup$
I think it must be zero
$endgroup$
– Aditya Garg
Jan 10 at 12:25
$begingroup$
For the left side make the substitution $u=e^{ax}-1$ and for the right side make the substitution $v=e^{bx}-1$ and see where this leads you
$endgroup$
– Henry Lee
Jan 10 at 12:42
$begingroup$
Two ideas : maybe it's possible to use Frulanni's integrals ? And what about to represent $frac{1}{e^{ax} - 1} = sum $ and integrate under the sum sign ?
$endgroup$
– openspace
Jan 10 at 12:21
$begingroup$
Two ideas : maybe it's possible to use Frulanni's integrals ? And what about to represent $frac{1}{e^{ax} - 1} = sum $ and integrate under the sum sign ?
$endgroup$
– openspace
Jan 10 at 12:21
$begingroup$
I think it must be zero
$endgroup$
– Aditya Garg
Jan 10 at 12:25
$begingroup$
I think it must be zero
$endgroup$
– Aditya Garg
Jan 10 at 12:25
$begingroup$
For the left side make the substitution $u=e^{ax}-1$ and for the right side make the substitution $v=e^{bx}-1$ and see where this leads you
$endgroup$
– Henry Lee
Jan 10 at 12:42
$begingroup$
For the left side make the substitution $u=e^{ax}-1$ and for the right side make the substitution $v=e^{bx}-1$ and see where this leads you
$endgroup$
– Henry Lee
Jan 10 at 12:42
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Here is an hint for solving $displaystyleint frac{a}{e^{ax}-1}dx $.
Let $e^{ax}-1=u $. This substitution will give us the integral $$intfrac{1}{u(u+1)}du=intleft(frac1u-frac{1}{(u+1)}right)du.$$ Can you take it from here?
$endgroup$
add a comment |
$begingroup$
Hints:
0) Prove the integral to be absolutely convergent.
1) Integrate from $epsilon >0$ instead and prove that you may split the integral.
2) Change variables so that integrands are the same.
3) See what happens and remember $e^x=1+x+o(x)$ at $x rightarrow 0$.
$endgroup$
add a comment |
$begingroup$
Another hint for solving $int frac{a}{e^{ax}-1} dx$
$$int frac{a}{e^{ax}-1} dx = int frac{a(e^{ax}+1)}{e^{2ax}-1} dx = frac{1}{2}int frac{a}{e^{ax}-1} dx + int frac{a e^{ax}}{e^{2ax}-1} dx$$
Reagrouping terms and a change of variable s.t. $u = e^{ax}$ and $du = a e^{ax}dx$, leads to:
$$frac{1}{2}int frac{a}{e^{ax}-1} dx = int frac{1}{u^2-1} du= frac{1}{2} left( int frac{1}{u-1} du - int frac{1}{u+1} duright)$$
$$
boxed{
int frac{a}{e^{ax}-1} dx = lnleft( e^{2ax} - 1right) - lnleft( e^{2ax} + 1right)
}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068570%2fhow-to-do-integral-int-0-infty-left-fracaeax-1-fracbebx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here is an hint for solving $displaystyleint frac{a}{e^{ax}-1}dx $.
Let $e^{ax}-1=u $. This substitution will give us the integral $$intfrac{1}{u(u+1)}du=intleft(frac1u-frac{1}{(u+1)}right)du.$$ Can you take it from here?
$endgroup$
add a comment |
$begingroup$
Here is an hint for solving $displaystyleint frac{a}{e^{ax}-1}dx $.
Let $e^{ax}-1=u $. This substitution will give us the integral $$intfrac{1}{u(u+1)}du=intleft(frac1u-frac{1}{(u+1)}right)du.$$ Can you take it from here?
$endgroup$
add a comment |
$begingroup$
Here is an hint for solving $displaystyleint frac{a}{e^{ax}-1}dx $.
Let $e^{ax}-1=u $. This substitution will give us the integral $$intfrac{1}{u(u+1)}du=intleft(frac1u-frac{1}{(u+1)}right)du.$$ Can you take it from here?
$endgroup$
Here is an hint for solving $displaystyleint frac{a}{e^{ax}-1}dx $.
Let $e^{ax}-1=u $. This substitution will give us the integral $$intfrac{1}{u(u+1)}du=intleft(frac1u-frac{1}{(u+1)}right)du.$$ Can you take it from here?
edited Jan 11 at 1:59
answered Jan 10 at 12:39
Thomas ShelbyThomas Shelby
3,7142525
3,7142525
add a comment |
add a comment |
$begingroup$
Hints:
0) Prove the integral to be absolutely convergent.
1) Integrate from $epsilon >0$ instead and prove that you may split the integral.
2) Change variables so that integrands are the same.
3) See what happens and remember $e^x=1+x+o(x)$ at $x rightarrow 0$.
$endgroup$
add a comment |
$begingroup$
Hints:
0) Prove the integral to be absolutely convergent.
1) Integrate from $epsilon >0$ instead and prove that you may split the integral.
2) Change variables so that integrands are the same.
3) See what happens and remember $e^x=1+x+o(x)$ at $x rightarrow 0$.
$endgroup$
add a comment |
$begingroup$
Hints:
0) Prove the integral to be absolutely convergent.
1) Integrate from $epsilon >0$ instead and prove that you may split the integral.
2) Change variables so that integrands are the same.
3) See what happens and remember $e^x=1+x+o(x)$ at $x rightarrow 0$.
$endgroup$
Hints:
0) Prove the integral to be absolutely convergent.
1) Integrate from $epsilon >0$ instead and prove that you may split the integral.
2) Change variables so that integrands are the same.
3) See what happens and remember $e^x=1+x+o(x)$ at $x rightarrow 0$.
edited Jan 10 at 12:36
answered Jan 10 at 12:26
MindlackMindlack
4,885210
4,885210
add a comment |
add a comment |
$begingroup$
Another hint for solving $int frac{a}{e^{ax}-1} dx$
$$int frac{a}{e^{ax}-1} dx = int frac{a(e^{ax}+1)}{e^{2ax}-1} dx = frac{1}{2}int frac{a}{e^{ax}-1} dx + int frac{a e^{ax}}{e^{2ax}-1} dx$$
Reagrouping terms and a change of variable s.t. $u = e^{ax}$ and $du = a e^{ax}dx$, leads to:
$$frac{1}{2}int frac{a}{e^{ax}-1} dx = int frac{1}{u^2-1} du= frac{1}{2} left( int frac{1}{u-1} du - int frac{1}{u+1} duright)$$
$$
boxed{
int frac{a}{e^{ax}-1} dx = lnleft( e^{2ax} - 1right) - lnleft( e^{2ax} + 1right)
}$$
$endgroup$
add a comment |
$begingroup$
Another hint for solving $int frac{a}{e^{ax}-1} dx$
$$int frac{a}{e^{ax}-1} dx = int frac{a(e^{ax}+1)}{e^{2ax}-1} dx = frac{1}{2}int frac{a}{e^{ax}-1} dx + int frac{a e^{ax}}{e^{2ax}-1} dx$$
Reagrouping terms and a change of variable s.t. $u = e^{ax}$ and $du = a e^{ax}dx$, leads to:
$$frac{1}{2}int frac{a}{e^{ax}-1} dx = int frac{1}{u^2-1} du= frac{1}{2} left( int frac{1}{u-1} du - int frac{1}{u+1} duright)$$
$$
boxed{
int frac{a}{e^{ax}-1} dx = lnleft( e^{2ax} - 1right) - lnleft( e^{2ax} + 1right)
}$$
$endgroup$
add a comment |
$begingroup$
Another hint for solving $int frac{a}{e^{ax}-1} dx$
$$int frac{a}{e^{ax}-1} dx = int frac{a(e^{ax}+1)}{e^{2ax}-1} dx = frac{1}{2}int frac{a}{e^{ax}-1} dx + int frac{a e^{ax}}{e^{2ax}-1} dx$$
Reagrouping terms and a change of variable s.t. $u = e^{ax}$ and $du = a e^{ax}dx$, leads to:
$$frac{1}{2}int frac{a}{e^{ax}-1} dx = int frac{1}{u^2-1} du= frac{1}{2} left( int frac{1}{u-1} du - int frac{1}{u+1} duright)$$
$$
boxed{
int frac{a}{e^{ax}-1} dx = lnleft( e^{2ax} - 1right) - lnleft( e^{2ax} + 1right)
}$$
$endgroup$
Another hint for solving $int frac{a}{e^{ax}-1} dx$
$$int frac{a}{e^{ax}-1} dx = int frac{a(e^{ax}+1)}{e^{2ax}-1} dx = frac{1}{2}int frac{a}{e^{ax}-1} dx + int frac{a e^{ax}}{e^{2ax}-1} dx$$
Reagrouping terms and a change of variable s.t. $u = e^{ax}$ and $du = a e^{ax}dx$, leads to:
$$frac{1}{2}int frac{a}{e^{ax}-1} dx = int frac{1}{u^2-1} du= frac{1}{2} left( int frac{1}{u-1} du - int frac{1}{u+1} duright)$$
$$
boxed{
int frac{a}{e^{ax}-1} dx = lnleft( e^{2ax} - 1right) - lnleft( e^{2ax} + 1right)
}$$
edited Jan 10 at 14:30
answered Jan 10 at 12:46
Carlos CamposCarlos Campos
57439
57439
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068570%2fhow-to-do-integral-int-0-infty-left-fracaeax-1-fracbebx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Two ideas : maybe it's possible to use Frulanni's integrals ? And what about to represent $frac{1}{e^{ax} - 1} = sum $ and integrate under the sum sign ?
$endgroup$
– openspace
Jan 10 at 12:21
$begingroup$
I think it must be zero
$endgroup$
– Aditya Garg
Jan 10 at 12:25
$begingroup$
For the left side make the substitution $u=e^{ax}-1$ and for the right side make the substitution $v=e^{bx}-1$ and see where this leads you
$endgroup$
– Henry Lee
Jan 10 at 12:42