Marginal probability distribution of unit circle random variable
$begingroup$
I am given a task stating that there is a bivariate random vector X such that:
$$begin{equation}
p_x(x)=left{
begin{array}{@{}ll@{}}
frac1pi, & text{if} x^2+y^2 < 1 \
0, & text{otherwise}
end{array}right.
end{equation} $$
and I am asked to find margianl distribution with respect to X and Y.
I tried to catch it up by google and found some answers. e.g.
$$f(x)_x=int_sqrt{1^2-x^2}^sqrt{1^2+x^2}frac1pi dy$$
One thing I am interested in. Where the integration bounds came from. Can anyone explain pls?
probability probability-theory probability-distributions
$endgroup$
add a comment |
$begingroup$
I am given a task stating that there is a bivariate random vector X such that:
$$begin{equation}
p_x(x)=left{
begin{array}{@{}ll@{}}
frac1pi, & text{if} x^2+y^2 < 1 \
0, & text{otherwise}
end{array}right.
end{equation} $$
and I am asked to find margianl distribution with respect to X and Y.
I tried to catch it up by google and found some answers. e.g.
$$f(x)_x=int_sqrt{1^2-x^2}^sqrt{1^2+x^2}frac1pi dy$$
One thing I am interested in. Where the integration bounds came from. Can anyone explain pls?
probability probability-theory probability-distributions
$endgroup$
$begingroup$
I find different limits: $- sqrt(1-x^2)$ and $sqrt(1-x^2)$
$endgroup$
– Carlos Campos
Jan 9 at 19:35
$begingroup$
Thanks, just realized that I can do in such way
$endgroup$
– Hillbilly Joe
Jan 9 at 19:42
add a comment |
$begingroup$
I am given a task stating that there is a bivariate random vector X such that:
$$begin{equation}
p_x(x)=left{
begin{array}{@{}ll@{}}
frac1pi, & text{if} x^2+y^2 < 1 \
0, & text{otherwise}
end{array}right.
end{equation} $$
and I am asked to find margianl distribution with respect to X and Y.
I tried to catch it up by google and found some answers. e.g.
$$f(x)_x=int_sqrt{1^2-x^2}^sqrt{1^2+x^2}frac1pi dy$$
One thing I am interested in. Where the integration bounds came from. Can anyone explain pls?
probability probability-theory probability-distributions
$endgroup$
I am given a task stating that there is a bivariate random vector X such that:
$$begin{equation}
p_x(x)=left{
begin{array}{@{}ll@{}}
frac1pi, & text{if} x^2+y^2 < 1 \
0, & text{otherwise}
end{array}right.
end{equation} $$
and I am asked to find margianl distribution with respect to X and Y.
I tried to catch it up by google and found some answers. e.g.
$$f(x)_x=int_sqrt{1^2-x^2}^sqrt{1^2+x^2}frac1pi dy$$
One thing I am interested in. Where the integration bounds came from. Can anyone explain pls?
probability probability-theory probability-distributions
probability probability-theory probability-distributions
edited Jan 9 at 19:16
Hillbilly Joe
asked Jan 9 at 19:07
Hillbilly JoeHillbilly Joe
164
164
$begingroup$
I find different limits: $- sqrt(1-x^2)$ and $sqrt(1-x^2)$
$endgroup$
– Carlos Campos
Jan 9 at 19:35
$begingroup$
Thanks, just realized that I can do in such way
$endgroup$
– Hillbilly Joe
Jan 9 at 19:42
add a comment |
$begingroup$
I find different limits: $- sqrt(1-x^2)$ and $sqrt(1-x^2)$
$endgroup$
– Carlos Campos
Jan 9 at 19:35
$begingroup$
Thanks, just realized that I can do in such way
$endgroup$
– Hillbilly Joe
Jan 9 at 19:42
$begingroup$
I find different limits: $- sqrt(1-x^2)$ and $sqrt(1-x^2)$
$endgroup$
– Carlos Campos
Jan 9 at 19:35
$begingroup$
I find different limits: $- sqrt(1-x^2)$ and $sqrt(1-x^2)$
$endgroup$
– Carlos Campos
Jan 9 at 19:35
$begingroup$
Thanks, just realized that I can do in such way
$endgroup$
– Hillbilly Joe
Jan 9 at 19:42
$begingroup$
Thanks, just realized that I can do in such way
$endgroup$
– Hillbilly Joe
Jan 9 at 19:42
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Define the domain $mathcal{D} = {(x_1,x2) vert x_1^2 + x_2^2 <1}$. Given a fix $x_1$, if $(x_1, x_2)$ belongs to $mathcal{D}$, $x_2$ has to satisfy $ - sqrt{1-x_1^2}< x_2 < sqrt{1-x_1^2}$, where we are taken positive roots:
begin{equation}
f_{X_1}(x_1) = int_{D} f_{X_1,X_2}(x_1,x_2) d x_2 = left{
begin{array}{@{}ll@{}}
int_{- sqrt{1-x_1^2}}^{ sqrt{1-x_1^2}} frac{1}{pi} d x_2 = frac{2sqrt{1-x_1^2}}{pi} & text{if} x_1^2 < 1 \
0, & text{otherwise}
end{array}right.
end{equation}
$endgroup$
$begingroup$
Thank you for your explanation.
$endgroup$
– Hillbilly Joe
Jan 9 at 19:46
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067836%2fmarginal-probability-distribution-of-unit-circle-random-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Define the domain $mathcal{D} = {(x_1,x2) vert x_1^2 + x_2^2 <1}$. Given a fix $x_1$, if $(x_1, x_2)$ belongs to $mathcal{D}$, $x_2$ has to satisfy $ - sqrt{1-x_1^2}< x_2 < sqrt{1-x_1^2}$, where we are taken positive roots:
begin{equation}
f_{X_1}(x_1) = int_{D} f_{X_1,X_2}(x_1,x_2) d x_2 = left{
begin{array}{@{}ll@{}}
int_{- sqrt{1-x_1^2}}^{ sqrt{1-x_1^2}} frac{1}{pi} d x_2 = frac{2sqrt{1-x_1^2}}{pi} & text{if} x_1^2 < 1 \
0, & text{otherwise}
end{array}right.
end{equation}
$endgroup$
$begingroup$
Thank you for your explanation.
$endgroup$
– Hillbilly Joe
Jan 9 at 19:46
add a comment |
$begingroup$
Define the domain $mathcal{D} = {(x_1,x2) vert x_1^2 + x_2^2 <1}$. Given a fix $x_1$, if $(x_1, x_2)$ belongs to $mathcal{D}$, $x_2$ has to satisfy $ - sqrt{1-x_1^2}< x_2 < sqrt{1-x_1^2}$, where we are taken positive roots:
begin{equation}
f_{X_1}(x_1) = int_{D} f_{X_1,X_2}(x_1,x_2) d x_2 = left{
begin{array}{@{}ll@{}}
int_{- sqrt{1-x_1^2}}^{ sqrt{1-x_1^2}} frac{1}{pi} d x_2 = frac{2sqrt{1-x_1^2}}{pi} & text{if} x_1^2 < 1 \
0, & text{otherwise}
end{array}right.
end{equation}
$endgroup$
$begingroup$
Thank you for your explanation.
$endgroup$
– Hillbilly Joe
Jan 9 at 19:46
add a comment |
$begingroup$
Define the domain $mathcal{D} = {(x_1,x2) vert x_1^2 + x_2^2 <1}$. Given a fix $x_1$, if $(x_1, x_2)$ belongs to $mathcal{D}$, $x_2$ has to satisfy $ - sqrt{1-x_1^2}< x_2 < sqrt{1-x_1^2}$, where we are taken positive roots:
begin{equation}
f_{X_1}(x_1) = int_{D} f_{X_1,X_2}(x_1,x_2) d x_2 = left{
begin{array}{@{}ll@{}}
int_{- sqrt{1-x_1^2}}^{ sqrt{1-x_1^2}} frac{1}{pi} d x_2 = frac{2sqrt{1-x_1^2}}{pi} & text{if} x_1^2 < 1 \
0, & text{otherwise}
end{array}right.
end{equation}
$endgroup$
Define the domain $mathcal{D} = {(x_1,x2) vert x_1^2 + x_2^2 <1}$. Given a fix $x_1$, if $(x_1, x_2)$ belongs to $mathcal{D}$, $x_2$ has to satisfy $ - sqrt{1-x_1^2}< x_2 < sqrt{1-x_1^2}$, where we are taken positive roots:
begin{equation}
f_{X_1}(x_1) = int_{D} f_{X_1,X_2}(x_1,x_2) d x_2 = left{
begin{array}{@{}ll@{}}
int_{- sqrt{1-x_1^2}}^{ sqrt{1-x_1^2}} frac{1}{pi} d x_2 = frac{2sqrt{1-x_1^2}}{pi} & text{if} x_1^2 < 1 \
0, & text{otherwise}
end{array}right.
end{equation}
answered Jan 9 at 19:42
Carlos CamposCarlos Campos
57439
57439
$begingroup$
Thank you for your explanation.
$endgroup$
– Hillbilly Joe
Jan 9 at 19:46
add a comment |
$begingroup$
Thank you for your explanation.
$endgroup$
– Hillbilly Joe
Jan 9 at 19:46
$begingroup$
Thank you for your explanation.
$endgroup$
– Hillbilly Joe
Jan 9 at 19:46
$begingroup$
Thank you for your explanation.
$endgroup$
– Hillbilly Joe
Jan 9 at 19:46
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067836%2fmarginal-probability-distribution-of-unit-circle-random-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I find different limits: $- sqrt(1-x^2)$ and $sqrt(1-x^2)$
$endgroup$
– Carlos Campos
Jan 9 at 19:35
$begingroup$
Thanks, just realized that I can do in such way
$endgroup$
– Hillbilly Joe
Jan 9 at 19:42