Calculate $lim_{n to infty} int_{mathbb{R_{+}}} exp((cos^n x) -x) dlambda(x)$
$begingroup$
the exponential function being increasing we have $| exp((cos^n x) -x)| leq exp(1 -x) in L^1([0,+infty[) $
so $x to exp((cos^n x) -x)$ is Riemann absolutely convergent therefore
$l = lim_{n to infty} int_{mathbb{R_{+}}} exp((cos x^n) -x) dlambda(x) =lim_{n to infty} int_{0}^{+infty} exp((cos^n x) -x) dx $
by the dominated convergence theorem :
$l = int_{0}^{+infty} lim_{n to infty} exp((cos^n x) -x) dx$
I don't know how to deal with this limit, as $x$ is in $mathbb{R_{+}}$ I can't even use a taylor expression around $0$
any hints ?
integration measure-theory improper-integrals lebesgue-integral lebesgue-measure
$endgroup$
add a comment |
$begingroup$
the exponential function being increasing we have $| exp((cos^n x) -x)| leq exp(1 -x) in L^1([0,+infty[) $
so $x to exp((cos^n x) -x)$ is Riemann absolutely convergent therefore
$l = lim_{n to infty} int_{mathbb{R_{+}}} exp((cos x^n) -x) dlambda(x) =lim_{n to infty} int_{0}^{+infty} exp((cos^n x) -x) dx $
by the dominated convergence theorem :
$l = int_{0}^{+infty} lim_{n to infty} exp((cos^n x) -x) dx$
I don't know how to deal with this limit, as $x$ is in $mathbb{R_{+}}$ I can't even use a taylor expression around $0$
any hints ?
integration measure-theory improper-integrals lebesgue-integral lebesgue-measure
$endgroup$
add a comment |
$begingroup$
the exponential function being increasing we have $| exp((cos^n x) -x)| leq exp(1 -x) in L^1([0,+infty[) $
so $x to exp((cos^n x) -x)$ is Riemann absolutely convergent therefore
$l = lim_{n to infty} int_{mathbb{R_{+}}} exp((cos x^n) -x) dlambda(x) =lim_{n to infty} int_{0}^{+infty} exp((cos^n x) -x) dx $
by the dominated convergence theorem :
$l = int_{0}^{+infty} lim_{n to infty} exp((cos^n x) -x) dx$
I don't know how to deal with this limit, as $x$ is in $mathbb{R_{+}}$ I can't even use a taylor expression around $0$
any hints ?
integration measure-theory improper-integrals lebesgue-integral lebesgue-measure
$endgroup$
the exponential function being increasing we have $| exp((cos^n x) -x)| leq exp(1 -x) in L^1([0,+infty[) $
so $x to exp((cos^n x) -x)$ is Riemann absolutely convergent therefore
$l = lim_{n to infty} int_{mathbb{R_{+}}} exp((cos x^n) -x) dlambda(x) =lim_{n to infty} int_{0}^{+infty} exp((cos^n x) -x) dx $
by the dominated convergence theorem :
$l = int_{0}^{+infty} lim_{n to infty} exp((cos^n x) -x) dx$
I don't know how to deal with this limit, as $x$ is in $mathbb{R_{+}}$ I can't even use a taylor expression around $0$
any hints ?
integration measure-theory improper-integrals lebesgue-integral lebesgue-measure
integration measure-theory improper-integrals lebesgue-integral lebesgue-measure
asked Jan 9 at 18:26
rapidracimrapidracim
1,7191419
1,7191419
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
For $x in mathbb R_+ setminus{kpi + pi/2 ; k in mathbb N}$ you have:
$$exp((cos^n x) -x) to e^{-x}$$ as $n to infty$ and
$$0 le exp((cos^n x) -x) le e cdot e^{-x}$$ for all $x in mathbb R_+$.
As ${kpi + pi/2 ; k in mathbb N}$ is a null set (for Lebesgue measure) and $int_{mathbb R_+} e^{-x} dx$ converges, you can apply Lebesgue dominated convergence theorem and conclude that
$$lim_{n to infty} int_{mathbb{R_{+}}} exp((cos^n x) -x) dlambda(x) = int_{mathbb R_+} e^{-x} dx$$
$endgroup$
add a comment |
$begingroup$
Notice that as $n to infty$ all values of $cos^n(x)$ go to zero except the exact points at which $cos(x)=1$ which have infinitesimally small width so have a value of zero when integrating over them. The integral then becomes simply the integral of $exp(-x)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067798%2fcalculate-lim-n-to-infty-int-mathbbr-exp-cosn-x-x-d-lambd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $x in mathbb R_+ setminus{kpi + pi/2 ; k in mathbb N}$ you have:
$$exp((cos^n x) -x) to e^{-x}$$ as $n to infty$ and
$$0 le exp((cos^n x) -x) le e cdot e^{-x}$$ for all $x in mathbb R_+$.
As ${kpi + pi/2 ; k in mathbb N}$ is a null set (for Lebesgue measure) and $int_{mathbb R_+} e^{-x} dx$ converges, you can apply Lebesgue dominated convergence theorem and conclude that
$$lim_{n to infty} int_{mathbb{R_{+}}} exp((cos^n x) -x) dlambda(x) = int_{mathbb R_+} e^{-x} dx$$
$endgroup$
add a comment |
$begingroup$
For $x in mathbb R_+ setminus{kpi + pi/2 ; k in mathbb N}$ you have:
$$exp((cos^n x) -x) to e^{-x}$$ as $n to infty$ and
$$0 le exp((cos^n x) -x) le e cdot e^{-x}$$ for all $x in mathbb R_+$.
As ${kpi + pi/2 ; k in mathbb N}$ is a null set (for Lebesgue measure) and $int_{mathbb R_+} e^{-x} dx$ converges, you can apply Lebesgue dominated convergence theorem and conclude that
$$lim_{n to infty} int_{mathbb{R_{+}}} exp((cos^n x) -x) dlambda(x) = int_{mathbb R_+} e^{-x} dx$$
$endgroup$
add a comment |
$begingroup$
For $x in mathbb R_+ setminus{kpi + pi/2 ; k in mathbb N}$ you have:
$$exp((cos^n x) -x) to e^{-x}$$ as $n to infty$ and
$$0 le exp((cos^n x) -x) le e cdot e^{-x}$$ for all $x in mathbb R_+$.
As ${kpi + pi/2 ; k in mathbb N}$ is a null set (for Lebesgue measure) and $int_{mathbb R_+} e^{-x} dx$ converges, you can apply Lebesgue dominated convergence theorem and conclude that
$$lim_{n to infty} int_{mathbb{R_{+}}} exp((cos^n x) -x) dlambda(x) = int_{mathbb R_+} e^{-x} dx$$
$endgroup$
For $x in mathbb R_+ setminus{kpi + pi/2 ; k in mathbb N}$ you have:
$$exp((cos^n x) -x) to e^{-x}$$ as $n to infty$ and
$$0 le exp((cos^n x) -x) le e cdot e^{-x}$$ for all $x in mathbb R_+$.
As ${kpi + pi/2 ; k in mathbb N}$ is a null set (for Lebesgue measure) and $int_{mathbb R_+} e^{-x} dx$ converges, you can apply Lebesgue dominated convergence theorem and conclude that
$$lim_{n to infty} int_{mathbb{R_{+}}} exp((cos^n x) -x) dlambda(x) = int_{mathbb R_+} e^{-x} dx$$
edited Jan 9 at 21:36
answered Jan 9 at 18:44
mathcounterexamples.netmathcounterexamples.net
26.9k22157
26.9k22157
add a comment |
add a comment |
$begingroup$
Notice that as $n to infty$ all values of $cos^n(x)$ go to zero except the exact points at which $cos(x)=1$ which have infinitesimally small width so have a value of zero when integrating over them. The integral then becomes simply the integral of $exp(-x)$.
$endgroup$
add a comment |
$begingroup$
Notice that as $n to infty$ all values of $cos^n(x)$ go to zero except the exact points at which $cos(x)=1$ which have infinitesimally small width so have a value of zero when integrating over them. The integral then becomes simply the integral of $exp(-x)$.
$endgroup$
add a comment |
$begingroup$
Notice that as $n to infty$ all values of $cos^n(x)$ go to zero except the exact points at which $cos(x)=1$ which have infinitesimally small width so have a value of zero when integrating over them. The integral then becomes simply the integral of $exp(-x)$.
$endgroup$
Notice that as $n to infty$ all values of $cos^n(x)$ go to zero except the exact points at which $cos(x)=1$ which have infinitesimally small width so have a value of zero when integrating over them. The integral then becomes simply the integral of $exp(-x)$.
answered Jan 9 at 18:36
Peter ForemanPeter Foreman
2,5441214
2,5441214
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067798%2fcalculate-lim-n-to-infty-int-mathbbr-exp-cosn-x-x-d-lambd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown