Finding the value of integral.












2












$begingroup$


If $ int_{-infty}^{infty} f(x) dx= 1,$
Find value of $ int_{-infty}^{infty} f(x-frac{1}{x}) dx$.



I tried substituting $x$ as $frac{1}{t}$, but nothing is happening.
In the denominator, $1+x^2$ is left.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: Try substituting $x=e^u$.
    $endgroup$
    – John Doe
    Jan 5 at 17:49










  • $begingroup$
    @JohnDoe Your substitution only works for $xin(0,infty)$.
    $endgroup$
    – Matemáticos Chibchas
    Jan 13 at 6:01










  • $begingroup$
    @matematicoschibchas hmm, you're right. You can split it the integral range into positive and negative $x$, then use $x=-e^{-u}$ for the negative part.
    $endgroup$
    – John Doe
    Jan 14 at 2:20


















2












$begingroup$


If $ int_{-infty}^{infty} f(x) dx= 1,$
Find value of $ int_{-infty}^{infty} f(x-frac{1}{x}) dx$.



I tried substituting $x$ as $frac{1}{t}$, but nothing is happening.
In the denominator, $1+x^2$ is left.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: Try substituting $x=e^u$.
    $endgroup$
    – John Doe
    Jan 5 at 17:49










  • $begingroup$
    @JohnDoe Your substitution only works for $xin(0,infty)$.
    $endgroup$
    – Matemáticos Chibchas
    Jan 13 at 6:01










  • $begingroup$
    @matematicoschibchas hmm, you're right. You can split it the integral range into positive and negative $x$, then use $x=-e^{-u}$ for the negative part.
    $endgroup$
    – John Doe
    Jan 14 at 2:20
















2












2








2





$begingroup$


If $ int_{-infty}^{infty} f(x) dx= 1,$
Find value of $ int_{-infty}^{infty} f(x-frac{1}{x}) dx$.



I tried substituting $x$ as $frac{1}{t}$, but nothing is happening.
In the denominator, $1+x^2$ is left.










share|cite|improve this question











$endgroup$




If $ int_{-infty}^{infty} f(x) dx= 1,$
Find value of $ int_{-infty}^{infty} f(x-frac{1}{x}) dx$.



I tried substituting $x$ as $frac{1}{t}$, but nothing is happening.
In the denominator, $1+x^2$ is left.







definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 5 at 17:38









Gnumbertester

558112




558112










asked Jan 5 at 17:22









Math_centricMath_centric

161




161












  • $begingroup$
    Hint: Try substituting $x=e^u$.
    $endgroup$
    – John Doe
    Jan 5 at 17:49










  • $begingroup$
    @JohnDoe Your substitution only works for $xin(0,infty)$.
    $endgroup$
    – Matemáticos Chibchas
    Jan 13 at 6:01










  • $begingroup$
    @matematicoschibchas hmm, you're right. You can split it the integral range into positive and negative $x$, then use $x=-e^{-u}$ for the negative part.
    $endgroup$
    – John Doe
    Jan 14 at 2:20




















  • $begingroup$
    Hint: Try substituting $x=e^u$.
    $endgroup$
    – John Doe
    Jan 5 at 17:49










  • $begingroup$
    @JohnDoe Your substitution only works for $xin(0,infty)$.
    $endgroup$
    – Matemáticos Chibchas
    Jan 13 at 6:01










  • $begingroup$
    @matematicoschibchas hmm, you're right. You can split it the integral range into positive and negative $x$, then use $x=-e^{-u}$ for the negative part.
    $endgroup$
    – John Doe
    Jan 14 at 2:20


















$begingroup$
Hint: Try substituting $x=e^u$.
$endgroup$
– John Doe
Jan 5 at 17:49




$begingroup$
Hint: Try substituting $x=e^u$.
$endgroup$
– John Doe
Jan 5 at 17:49












$begingroup$
@JohnDoe Your substitution only works for $xin(0,infty)$.
$endgroup$
– Matemáticos Chibchas
Jan 13 at 6:01




$begingroup$
@JohnDoe Your substitution only works for $xin(0,infty)$.
$endgroup$
– Matemáticos Chibchas
Jan 13 at 6:01












$begingroup$
@matematicoschibchas hmm, you're right. You can split it the integral range into positive and negative $x$, then use $x=-e^{-u}$ for the negative part.
$endgroup$
– John Doe
Jan 14 at 2:20






$begingroup$
@matematicoschibchas hmm, you're right. You can split it the integral range into positive and negative $x$, then use $x=-e^{-u}$ for the negative part.
$endgroup$
– John Doe
Jan 14 at 2:20












1 Answer
1






active

oldest

votes


















3












$begingroup$

One may recall the following property
$$
int_{-infty}^{+infty} f(x) , dx = int_{-infty}^{+infty} fleft( x - frac{1}{x} right) , dx
$$
proved here.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062950%2ffinding-the-value-of-integral%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    One may recall the following property
    $$
    int_{-infty}^{+infty} f(x) , dx = int_{-infty}^{+infty} fleft( x - frac{1}{x} right) , dx
    $$
    proved here.






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      One may recall the following property
      $$
      int_{-infty}^{+infty} f(x) , dx = int_{-infty}^{+infty} fleft( x - frac{1}{x} right) , dx
      $$
      proved here.






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        One may recall the following property
        $$
        int_{-infty}^{+infty} f(x) , dx = int_{-infty}^{+infty} fleft( x - frac{1}{x} right) , dx
        $$
        proved here.






        share|cite|improve this answer









        $endgroup$



        One may recall the following property
        $$
        int_{-infty}^{+infty} f(x) , dx = int_{-infty}^{+infty} fleft( x - frac{1}{x} right) , dx
        $$
        proved here.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 5 at 17:30









        Olivier OloaOlivier Oloa

        108k17177294




        108k17177294






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062950%2ffinding-the-value-of-integral%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            張江高科駅