Proving $sin^2x cos^2y - cos^2x sin^2y ;equiv; cos^2y - cos^2x$
$begingroup$
Knowing
$$sin^2theta +cos^2theta equiv 1$$
how would I prove:
$$sin^2x cos^2y - cos^2x sin^2y ;equiv; cos^2y - cos^2x$$
Can I substitute the first equation to prove the second one? If so, how can I?
Please help.
trigonometry
$endgroup$
add a comment |
$begingroup$
Knowing
$$sin^2theta +cos^2theta equiv 1$$
how would I prove:
$$sin^2x cos^2y - cos^2x sin^2y ;equiv; cos^2y - cos^2x$$
Can I substitute the first equation to prove the second one? If so, how can I?
Please help.
trigonometry
$endgroup$
$begingroup$
Please read this tutorial on how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Jan 15 at 13:47
6
$begingroup$
The right-hand side of the target relation has only cosines in it. Can you use the Pythagorean identity to get rid of the sines on the left-hand side?
$endgroup$
– Blue
Jan 15 at 13:47
$begingroup$
See also math.stackexchange.com/questions/175143/…
$endgroup$
– lab bhattacharjee
Jan 15 at 13:54
add a comment |
$begingroup$
Knowing
$$sin^2theta +cos^2theta equiv 1$$
how would I prove:
$$sin^2x cos^2y - cos^2x sin^2y ;equiv; cos^2y - cos^2x$$
Can I substitute the first equation to prove the second one? If so, how can I?
Please help.
trigonometry
$endgroup$
Knowing
$$sin^2theta +cos^2theta equiv 1$$
how would I prove:
$$sin^2x cos^2y - cos^2x sin^2y ;equiv; cos^2y - cos^2x$$
Can I substitute the first equation to prove the second one? If so, how can I?
Please help.
trigonometry
trigonometry
edited Jan 15 at 13:46
Blue
49.3k870157
49.3k870157
asked Jan 15 at 13:42
user8469209user8469209
123
123
$begingroup$
Please read this tutorial on how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Jan 15 at 13:47
6
$begingroup$
The right-hand side of the target relation has only cosines in it. Can you use the Pythagorean identity to get rid of the sines on the left-hand side?
$endgroup$
– Blue
Jan 15 at 13:47
$begingroup$
See also math.stackexchange.com/questions/175143/…
$endgroup$
– lab bhattacharjee
Jan 15 at 13:54
add a comment |
$begingroup$
Please read this tutorial on how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Jan 15 at 13:47
6
$begingroup$
The right-hand side of the target relation has only cosines in it. Can you use the Pythagorean identity to get rid of the sines on the left-hand side?
$endgroup$
– Blue
Jan 15 at 13:47
$begingroup$
See also math.stackexchange.com/questions/175143/…
$endgroup$
– lab bhattacharjee
Jan 15 at 13:54
$begingroup$
Please read this tutorial on how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Jan 15 at 13:47
$begingroup$
Please read this tutorial on how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Jan 15 at 13:47
6
6
$begingroup$
The right-hand side of the target relation has only cosines in it. Can you use the Pythagorean identity to get rid of the sines on the left-hand side?
$endgroup$
– Blue
Jan 15 at 13:47
$begingroup$
The right-hand side of the target relation has only cosines in it. Can you use the Pythagorean identity to get rid of the sines on the left-hand side?
$endgroup$
– Blue
Jan 15 at 13:47
$begingroup$
See also math.stackexchange.com/questions/175143/…
$endgroup$
– lab bhattacharjee
Jan 15 at 13:54
$begingroup$
See also math.stackexchange.com/questions/175143/…
$endgroup$
– lab bhattacharjee
Jan 15 at 13:54
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Notice that the right hand side only has cosines in it. Try replacing all of the $sin^2(x)$ and $sin^2(y)$ with $1-cos^2(x)$ and $1-cos^2(y)$ respectively. If you simplify, you will see the right hand side.
$endgroup$
add a comment |
$begingroup$
Yes you can substitute the first equation into the second one.
$sin^2theta +cos^2theta equiv 1 implies sin^2theta = 1-cos^2theta$
Substitute to get,
$begin{eqnarray}
sin^2x cos^2y - cos^2x sin^2y &=& ((1-cos^2(x)) (cos^2y)) - ((cos^2x) (1-cos^2(y)) \\
&=& cos^2y - ((cos^2y)(cos^2x)) - cos^2x + ((cos^2x)(cos^2y)) \\
&=& cos^2y - cos^2x
end{eqnarray}$
$endgroup$
add a comment |
$begingroup$
$sin^2x cos^2y - cos^2x sin^2y \
= sin^2x cos^2y + (cos^2x cos^2y - cos^2x cos^2y) - cos^2x sin^2y \
= (sin^2x + cos^2x) cos^2y - cos^2x (cos^2y + sin^2y) \
= cos^2y - cos^2x$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074444%2fproving-sin2x-cos2y-cos2x-sin2y-equiv-cos2y-cos2x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Notice that the right hand side only has cosines in it. Try replacing all of the $sin^2(x)$ and $sin^2(y)$ with $1-cos^2(x)$ and $1-cos^2(y)$ respectively. If you simplify, you will see the right hand side.
$endgroup$
add a comment |
$begingroup$
Notice that the right hand side only has cosines in it. Try replacing all of the $sin^2(x)$ and $sin^2(y)$ with $1-cos^2(x)$ and $1-cos^2(y)$ respectively. If you simplify, you will see the right hand side.
$endgroup$
add a comment |
$begingroup$
Notice that the right hand side only has cosines in it. Try replacing all of the $sin^2(x)$ and $sin^2(y)$ with $1-cos^2(x)$ and $1-cos^2(y)$ respectively. If you simplify, you will see the right hand side.
$endgroup$
Notice that the right hand side only has cosines in it. Try replacing all of the $sin^2(x)$ and $sin^2(y)$ with $1-cos^2(x)$ and $1-cos^2(y)$ respectively. If you simplify, you will see the right hand side.
edited Feb 18 at 17:44
answered Jan 15 at 14:40
CuhrazateeCuhrazatee
372110
372110
add a comment |
add a comment |
$begingroup$
Yes you can substitute the first equation into the second one.
$sin^2theta +cos^2theta equiv 1 implies sin^2theta = 1-cos^2theta$
Substitute to get,
$begin{eqnarray}
sin^2x cos^2y - cos^2x sin^2y &=& ((1-cos^2(x)) (cos^2y)) - ((cos^2x) (1-cos^2(y)) \\
&=& cos^2y - ((cos^2y)(cos^2x)) - cos^2x + ((cos^2x)(cos^2y)) \\
&=& cos^2y - cos^2x
end{eqnarray}$
$endgroup$
add a comment |
$begingroup$
Yes you can substitute the first equation into the second one.
$sin^2theta +cos^2theta equiv 1 implies sin^2theta = 1-cos^2theta$
Substitute to get,
$begin{eqnarray}
sin^2x cos^2y - cos^2x sin^2y &=& ((1-cos^2(x)) (cos^2y)) - ((cos^2x) (1-cos^2(y)) \\
&=& cos^2y - ((cos^2y)(cos^2x)) - cos^2x + ((cos^2x)(cos^2y)) \\
&=& cos^2y - cos^2x
end{eqnarray}$
$endgroup$
add a comment |
$begingroup$
Yes you can substitute the first equation into the second one.
$sin^2theta +cos^2theta equiv 1 implies sin^2theta = 1-cos^2theta$
Substitute to get,
$begin{eqnarray}
sin^2x cos^2y - cos^2x sin^2y &=& ((1-cos^2(x)) (cos^2y)) - ((cos^2x) (1-cos^2(y)) \\
&=& cos^2y - ((cos^2y)(cos^2x)) - cos^2x + ((cos^2x)(cos^2y)) \\
&=& cos^2y - cos^2x
end{eqnarray}$
$endgroup$
Yes you can substitute the first equation into the second one.
$sin^2theta +cos^2theta equiv 1 implies sin^2theta = 1-cos^2theta$
Substitute to get,
$begin{eqnarray}
sin^2x cos^2y - cos^2x sin^2y &=& ((1-cos^2(x)) (cos^2y)) - ((cos^2x) (1-cos^2(y)) \\
&=& cos^2y - ((cos^2y)(cos^2x)) - cos^2x + ((cos^2x)(cos^2y)) \\
&=& cos^2y - cos^2x
end{eqnarray}$
answered Jan 15 at 14:54
E.NoleE.Nole
301114
301114
add a comment |
add a comment |
$begingroup$
$sin^2x cos^2y - cos^2x sin^2y \
= sin^2x cos^2y + (cos^2x cos^2y - cos^2x cos^2y) - cos^2x sin^2y \
= (sin^2x + cos^2x) cos^2y - cos^2x (cos^2y + sin^2y) \
= cos^2y - cos^2x$
$endgroup$
add a comment |
$begingroup$
$sin^2x cos^2y - cos^2x sin^2y \
= sin^2x cos^2y + (cos^2x cos^2y - cos^2x cos^2y) - cos^2x sin^2y \
= (sin^2x + cos^2x) cos^2y - cos^2x (cos^2y + sin^2y) \
= cos^2y - cos^2x$
$endgroup$
add a comment |
$begingroup$
$sin^2x cos^2y - cos^2x sin^2y \
= sin^2x cos^2y + (cos^2x cos^2y - cos^2x cos^2y) - cos^2x sin^2y \
= (sin^2x + cos^2x) cos^2y - cos^2x (cos^2y + sin^2y) \
= cos^2y - cos^2x$
$endgroup$
$sin^2x cos^2y - cos^2x sin^2y \
= sin^2x cos^2y + (cos^2x cos^2y - cos^2x cos^2y) - cos^2x sin^2y \
= (sin^2x + cos^2x) cos^2y - cos^2x (cos^2y + sin^2y) \
= cos^2y - cos^2x$
answered Jan 15 at 15:31
gandalf61gandalf61
9,174825
9,174825
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074444%2fproving-sin2x-cos2y-cos2x-sin2y-equiv-cos2y-cos2x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Please read this tutorial on how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Jan 15 at 13:47
6
$begingroup$
The right-hand side of the target relation has only cosines in it. Can you use the Pythagorean identity to get rid of the sines on the left-hand side?
$endgroup$
– Blue
Jan 15 at 13:47
$begingroup$
See also math.stackexchange.com/questions/175143/…
$endgroup$
– lab bhattacharjee
Jan 15 at 13:54