How to show annihilator has dimension m-n (with Proof)
$begingroup$
I would like to show the following:
Given a vector spaces $V$, a subspace $S subset V$ and an the dual space $V^*$ to $V$.
Show that: $$dim(N)+dim(S) = dim(V) = dim(V^*)$$, where $N subset V^*$ is the annihilator to $S$. Assume only finite dimensional vector spaces.
I tried a proof but I am not sure if this is correct:
Proof:
I give a try :-)
Assume that
$dim(S) = m$,
$dim(V) = dim(V^*) = n$
The annihilator is given as:
$$N:= { boldsymbol{alpha} mid langle boldsymbol{alpha},mathbf{x} rangle =0 quad ,quad forall mathbf{x} in S }$$
Where $ langle boldsymbol{alpha},x rangle$ is the duality pairing, it is a bilinear form as:
$$ begin{aligned} textrm{B}( boldsymbol{alpha},mathbf{x} ) : V^* times V &rightarrow mathbb{R} \
boldsymbol{alpha},mathbf{x} &mapsto langle boldsymbol{alpha} ,mathbf{x} rangle
end{aligned}
$$
We fix basis vectors for the following spaces:
Basis for $V$: ${mathbf{e}_i}$ with $i in {1,n}$
Basis for $S$: ${mathbf{e}_i}$ with $i in {1,m}$
Basis for $V^*$: ${boldsymbol{alpha}^i}$ with $i in {1,n}$
Now with $boldsymbol{beta} =beta_j boldsymbol{alpha}^j in V^*$ and $mathbf{x} = x^i mathbf{e}_i in V$, it follows that
$$ langle boldsymbol{beta} ,mathbf{x} rangle = langle beta_j boldsymbol{alpha}^j ,x^i mathbf{e}_irangle = beta_j langle boldsymbol{alpha}^j , mathbf{e}_i rangle x^i = beta_j B^j_{ i} x^i quad i,j in {1,n}$$
We want now for every $mathbf{x} in S$ and a corresponding $boldsymbol{alpha} in N$ that:
$$begin{aligned}
langle boldsymbol{beta} ,mathbf{x} rangle = 0 &= (beta_1, cdots, beta_n)left( begin{array}{ccc}
B^1_{ 1} & cdots & B^1_{ m} \
vdots & cdots & vdots \
vdots & cdots & vdots \
B^n_{ 1} & cdots & B^n_{ m}
end{array} right) left(begin{array}{c} x^1 \ vdots \ x^mend{array} right)
end{aligned} = [boldsymbol{beta}]^topmathbf{B}[mathbf{x}] =[mathbf{x}]^topmathbf{B}^top [boldsymbol{beta}], quad forall [mathbf{x}]
$$
From where follows:
$$mathbf{B}^top [boldsymbol{beta}] = mathbf{0}$$
If we assume that $boldsymbol{alpha}^i$ is the dual basis vector to $mathbf{e}_i$ with the property:
$$
langle boldsymbol{alpha}^i, mathbf{e}_j rangle = delta^i_{ j}
$$, where $delta^i_{ j}$ is the Kroenecker Delta.
It follows that $delta^j_{ i} = B^j_{ i}$. Thus $[boldsymbol{beta}]$ lies in the Nullspace of $N$, $[boldsymbol{beta}] in text{Null}(mathbf{B}^top)$.
The dimension of $text{dim}(text{Null}(mathbf{B}^top)) = n-m$
which means what now? and how can I construct a basis from the given ones for $N$?
Thanks for the inputs!
linear-algebra vector-spaces
$endgroup$
add a comment |
$begingroup$
I would like to show the following:
Given a vector spaces $V$, a subspace $S subset V$ and an the dual space $V^*$ to $V$.
Show that: $$dim(N)+dim(S) = dim(V) = dim(V^*)$$, where $N subset V^*$ is the annihilator to $S$. Assume only finite dimensional vector spaces.
I tried a proof but I am not sure if this is correct:
Proof:
I give a try :-)
Assume that
$dim(S) = m$,
$dim(V) = dim(V^*) = n$
The annihilator is given as:
$$N:= { boldsymbol{alpha} mid langle boldsymbol{alpha},mathbf{x} rangle =0 quad ,quad forall mathbf{x} in S }$$
Where $ langle boldsymbol{alpha},x rangle$ is the duality pairing, it is a bilinear form as:
$$ begin{aligned} textrm{B}( boldsymbol{alpha},mathbf{x} ) : V^* times V &rightarrow mathbb{R} \
boldsymbol{alpha},mathbf{x} &mapsto langle boldsymbol{alpha} ,mathbf{x} rangle
end{aligned}
$$
We fix basis vectors for the following spaces:
Basis for $V$: ${mathbf{e}_i}$ with $i in {1,n}$
Basis for $S$: ${mathbf{e}_i}$ with $i in {1,m}$
Basis for $V^*$: ${boldsymbol{alpha}^i}$ with $i in {1,n}$
Now with $boldsymbol{beta} =beta_j boldsymbol{alpha}^j in V^*$ and $mathbf{x} = x^i mathbf{e}_i in V$, it follows that
$$ langle boldsymbol{beta} ,mathbf{x} rangle = langle beta_j boldsymbol{alpha}^j ,x^i mathbf{e}_irangle = beta_j langle boldsymbol{alpha}^j , mathbf{e}_i rangle x^i = beta_j B^j_{ i} x^i quad i,j in {1,n}$$
We want now for every $mathbf{x} in S$ and a corresponding $boldsymbol{alpha} in N$ that:
$$begin{aligned}
langle boldsymbol{beta} ,mathbf{x} rangle = 0 &= (beta_1, cdots, beta_n)left( begin{array}{ccc}
B^1_{ 1} & cdots & B^1_{ m} \
vdots & cdots & vdots \
vdots & cdots & vdots \
B^n_{ 1} & cdots & B^n_{ m}
end{array} right) left(begin{array}{c} x^1 \ vdots \ x^mend{array} right)
end{aligned} = [boldsymbol{beta}]^topmathbf{B}[mathbf{x}] =[mathbf{x}]^topmathbf{B}^top [boldsymbol{beta}], quad forall [mathbf{x}]
$$
From where follows:
$$mathbf{B}^top [boldsymbol{beta}] = mathbf{0}$$
If we assume that $boldsymbol{alpha}^i$ is the dual basis vector to $mathbf{e}_i$ with the property:
$$
langle boldsymbol{alpha}^i, mathbf{e}_j rangle = delta^i_{ j}
$$, where $delta^i_{ j}$ is the Kroenecker Delta.
It follows that $delta^j_{ i} = B^j_{ i}$. Thus $[boldsymbol{beta}]$ lies in the Nullspace of $N$, $[boldsymbol{beta}] in text{Null}(mathbf{B}^top)$.
The dimension of $text{dim}(text{Null}(mathbf{B}^top)) = n-m$
which means what now? and how can I construct a basis from the given ones for $N$?
Thanks for the inputs!
linear-algebra vector-spaces
$endgroup$
2
$begingroup$
You seem to assume $dim V < infty$ in your statement, as otherwise $dim V = dim V^*$ won't hold.
$endgroup$
– martini
May 28 '13 at 15:44
1
$begingroup$
I assume you mean $dim V<infty$. The restriction $phi_{|S}$ of a linear functional $phiin V^*$ yields a functional in $S^*$. This gives a surjective linear map $V^*longrightarrow S^*$ whose nullspace is the annihilator of $S$. Apply the rank-nullity theorem (or the first isomorphism theorem if you prefer).
$endgroup$
– Julien
May 28 '13 at 15:46
$begingroup$
Take a look at this post.
$endgroup$
– H. R.
Aug 9 '16 at 19:47
add a comment |
$begingroup$
I would like to show the following:
Given a vector spaces $V$, a subspace $S subset V$ and an the dual space $V^*$ to $V$.
Show that: $$dim(N)+dim(S) = dim(V) = dim(V^*)$$, where $N subset V^*$ is the annihilator to $S$. Assume only finite dimensional vector spaces.
I tried a proof but I am not sure if this is correct:
Proof:
I give a try :-)
Assume that
$dim(S) = m$,
$dim(V) = dim(V^*) = n$
The annihilator is given as:
$$N:= { boldsymbol{alpha} mid langle boldsymbol{alpha},mathbf{x} rangle =0 quad ,quad forall mathbf{x} in S }$$
Where $ langle boldsymbol{alpha},x rangle$ is the duality pairing, it is a bilinear form as:
$$ begin{aligned} textrm{B}( boldsymbol{alpha},mathbf{x} ) : V^* times V &rightarrow mathbb{R} \
boldsymbol{alpha},mathbf{x} &mapsto langle boldsymbol{alpha} ,mathbf{x} rangle
end{aligned}
$$
We fix basis vectors for the following spaces:
Basis for $V$: ${mathbf{e}_i}$ with $i in {1,n}$
Basis for $S$: ${mathbf{e}_i}$ with $i in {1,m}$
Basis for $V^*$: ${boldsymbol{alpha}^i}$ with $i in {1,n}$
Now with $boldsymbol{beta} =beta_j boldsymbol{alpha}^j in V^*$ and $mathbf{x} = x^i mathbf{e}_i in V$, it follows that
$$ langle boldsymbol{beta} ,mathbf{x} rangle = langle beta_j boldsymbol{alpha}^j ,x^i mathbf{e}_irangle = beta_j langle boldsymbol{alpha}^j , mathbf{e}_i rangle x^i = beta_j B^j_{ i} x^i quad i,j in {1,n}$$
We want now for every $mathbf{x} in S$ and a corresponding $boldsymbol{alpha} in N$ that:
$$begin{aligned}
langle boldsymbol{beta} ,mathbf{x} rangle = 0 &= (beta_1, cdots, beta_n)left( begin{array}{ccc}
B^1_{ 1} & cdots & B^1_{ m} \
vdots & cdots & vdots \
vdots & cdots & vdots \
B^n_{ 1} & cdots & B^n_{ m}
end{array} right) left(begin{array}{c} x^1 \ vdots \ x^mend{array} right)
end{aligned} = [boldsymbol{beta}]^topmathbf{B}[mathbf{x}] =[mathbf{x}]^topmathbf{B}^top [boldsymbol{beta}], quad forall [mathbf{x}]
$$
From where follows:
$$mathbf{B}^top [boldsymbol{beta}] = mathbf{0}$$
If we assume that $boldsymbol{alpha}^i$ is the dual basis vector to $mathbf{e}_i$ with the property:
$$
langle boldsymbol{alpha}^i, mathbf{e}_j rangle = delta^i_{ j}
$$, where $delta^i_{ j}$ is the Kroenecker Delta.
It follows that $delta^j_{ i} = B^j_{ i}$. Thus $[boldsymbol{beta}]$ lies in the Nullspace of $N$, $[boldsymbol{beta}] in text{Null}(mathbf{B}^top)$.
The dimension of $text{dim}(text{Null}(mathbf{B}^top)) = n-m$
which means what now? and how can I construct a basis from the given ones for $N$?
Thanks for the inputs!
linear-algebra vector-spaces
$endgroup$
I would like to show the following:
Given a vector spaces $V$, a subspace $S subset V$ and an the dual space $V^*$ to $V$.
Show that: $$dim(N)+dim(S) = dim(V) = dim(V^*)$$, where $N subset V^*$ is the annihilator to $S$. Assume only finite dimensional vector spaces.
I tried a proof but I am not sure if this is correct:
Proof:
I give a try :-)
Assume that
$dim(S) = m$,
$dim(V) = dim(V^*) = n$
The annihilator is given as:
$$N:= { boldsymbol{alpha} mid langle boldsymbol{alpha},mathbf{x} rangle =0 quad ,quad forall mathbf{x} in S }$$
Where $ langle boldsymbol{alpha},x rangle$ is the duality pairing, it is a bilinear form as:
$$ begin{aligned} textrm{B}( boldsymbol{alpha},mathbf{x} ) : V^* times V &rightarrow mathbb{R} \
boldsymbol{alpha},mathbf{x} &mapsto langle boldsymbol{alpha} ,mathbf{x} rangle
end{aligned}
$$
We fix basis vectors for the following spaces:
Basis for $V$: ${mathbf{e}_i}$ with $i in {1,n}$
Basis for $S$: ${mathbf{e}_i}$ with $i in {1,m}$
Basis for $V^*$: ${boldsymbol{alpha}^i}$ with $i in {1,n}$
Now with $boldsymbol{beta} =beta_j boldsymbol{alpha}^j in V^*$ and $mathbf{x} = x^i mathbf{e}_i in V$, it follows that
$$ langle boldsymbol{beta} ,mathbf{x} rangle = langle beta_j boldsymbol{alpha}^j ,x^i mathbf{e}_irangle = beta_j langle boldsymbol{alpha}^j , mathbf{e}_i rangle x^i = beta_j B^j_{ i} x^i quad i,j in {1,n}$$
We want now for every $mathbf{x} in S$ and a corresponding $boldsymbol{alpha} in N$ that:
$$begin{aligned}
langle boldsymbol{beta} ,mathbf{x} rangle = 0 &= (beta_1, cdots, beta_n)left( begin{array}{ccc}
B^1_{ 1} & cdots & B^1_{ m} \
vdots & cdots & vdots \
vdots & cdots & vdots \
B^n_{ 1} & cdots & B^n_{ m}
end{array} right) left(begin{array}{c} x^1 \ vdots \ x^mend{array} right)
end{aligned} = [boldsymbol{beta}]^topmathbf{B}[mathbf{x}] =[mathbf{x}]^topmathbf{B}^top [boldsymbol{beta}], quad forall [mathbf{x}]
$$
From where follows:
$$mathbf{B}^top [boldsymbol{beta}] = mathbf{0}$$
If we assume that $boldsymbol{alpha}^i$ is the dual basis vector to $mathbf{e}_i$ with the property:
$$
langle boldsymbol{alpha}^i, mathbf{e}_j rangle = delta^i_{ j}
$$, where $delta^i_{ j}$ is the Kroenecker Delta.
It follows that $delta^j_{ i} = B^j_{ i}$. Thus $[boldsymbol{beta}]$ lies in the Nullspace of $N$, $[boldsymbol{beta}] in text{Null}(mathbf{B}^top)$.
The dimension of $text{dim}(text{Null}(mathbf{B}^top)) = n-m$
which means what now? and how can I construct a basis from the given ones for $N$?
Thanks for the inputs!
linear-algebra vector-spaces
linear-algebra vector-spaces
edited Aug 9 '16 at 14:56
H. R.
9,52593263
9,52593263
asked May 28 '13 at 15:35
GabrielGabriel
1286
1286
2
$begingroup$
You seem to assume $dim V < infty$ in your statement, as otherwise $dim V = dim V^*$ won't hold.
$endgroup$
– martini
May 28 '13 at 15:44
1
$begingroup$
I assume you mean $dim V<infty$. The restriction $phi_{|S}$ of a linear functional $phiin V^*$ yields a functional in $S^*$. This gives a surjective linear map $V^*longrightarrow S^*$ whose nullspace is the annihilator of $S$. Apply the rank-nullity theorem (or the first isomorphism theorem if you prefer).
$endgroup$
– Julien
May 28 '13 at 15:46
$begingroup$
Take a look at this post.
$endgroup$
– H. R.
Aug 9 '16 at 19:47
add a comment |
2
$begingroup$
You seem to assume $dim V < infty$ in your statement, as otherwise $dim V = dim V^*$ won't hold.
$endgroup$
– martini
May 28 '13 at 15:44
1
$begingroup$
I assume you mean $dim V<infty$. The restriction $phi_{|S}$ of a linear functional $phiin V^*$ yields a functional in $S^*$. This gives a surjective linear map $V^*longrightarrow S^*$ whose nullspace is the annihilator of $S$. Apply the rank-nullity theorem (or the first isomorphism theorem if you prefer).
$endgroup$
– Julien
May 28 '13 at 15:46
$begingroup$
Take a look at this post.
$endgroup$
– H. R.
Aug 9 '16 at 19:47
2
2
$begingroup$
You seem to assume $dim V < infty$ in your statement, as otherwise $dim V = dim V^*$ won't hold.
$endgroup$
– martini
May 28 '13 at 15:44
$begingroup$
You seem to assume $dim V < infty$ in your statement, as otherwise $dim V = dim V^*$ won't hold.
$endgroup$
– martini
May 28 '13 at 15:44
1
1
$begingroup$
I assume you mean $dim V<infty$. The restriction $phi_{|S}$ of a linear functional $phiin V^*$ yields a functional in $S^*$. This gives a surjective linear map $V^*longrightarrow S^*$ whose nullspace is the annihilator of $S$. Apply the rank-nullity theorem (or the first isomorphism theorem if you prefer).
$endgroup$
– Julien
May 28 '13 at 15:46
$begingroup$
I assume you mean $dim V<infty$. The restriction $phi_{|S}$ of a linear functional $phiin V^*$ yields a functional in $S^*$. This gives a surjective linear map $V^*longrightarrow S^*$ whose nullspace is the annihilator of $S$. Apply the rank-nullity theorem (or the first isomorphism theorem if you prefer).
$endgroup$
– Julien
May 28 '13 at 15:46
$begingroup$
Take a look at this post.
$endgroup$
– H. R.
Aug 9 '16 at 19:47
$begingroup$
Take a look at this post.
$endgroup$
– H. R.
Aug 9 '16 at 19:47
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $V$ a finite dimensional vector space with $dim;V=n$ and $V'$ be its dual space over a field $Bbb F$.
This can be proved in two ways:
$mathbf {Proof ;1}:$ Let $B_S={s_1,...,s_k}$ be a basis for the subspace $S$. So $dim;S=k$. Extend $B_S$ to a basis of $V$ say $B_V={s_1,...,s_k,s_{k+1},...,s_n}$. Let $B^{'}_V={f_1,...,f_n}$ be the dual basis to $B_V$ where $f_i(s_j)=delta_{i,j}$, the Kronecker Delta.
My Claim is that ${f_{k+1},...,f_n}$ is the basis of $N=S^0$. Indeed let $fin V'$ then $f=a_1f_1+...+a_nf_n$ for some $a_1,...,a_n in Bbb F$. Now $f(s_j)=a_jf_j(s_j)=a_j$. So $f=f(s_1)f_1+...+f(s_n)f_n$. If $iin {k+1,...,n}$ and $j in {1,...,k}$ then $f_i(s_j)=0$. So if $sin S$ then $s=b_1s_1+...+b_ns_k$ for some $b_1,....,b_kin Bbb F $. Then $f_i(s)=0; forall i in {k+1,...,n}$. Hence $f_{k+1},...,f_n in S^0$. Then $ span {f_{k+1},...,f_n }subseteq S^0$ since $S^0$ is a subspace. Now suppose $fin S^0$ then $f(s_1)=...=f(s_k)=0$ since $s_1,...,s_k in S$. Then writing $f=f(s_1)f_1+...+f(s_n)f_n$, the first $k$ terms are zero i.e $f=f(s_{k+1})f_{k+1}+...+f(s_n)f_n$. So $fin span{f_{k+1},...,f_n}$. Hence $S^0subseteq span{f_{k+1},...,f_n}$. Hence $S^0=span{f_{k+1},...,f_n}$, and of course ${f_{k+1},...,f_n}$ is linearly independent being a subset of a set of basis vectors.So $dim;S^0=n-k=dim;V-dim;S$.So $dim;V=dim;S + dim;S^0$ . $lhd$
$mathbf {Proof ;2}:$ Now suppose $i:Srightarrow V$ be the natural inclusion map i.e $i(s)=s,; forall s in S$. Consider its dual map $i':V'rightarrow S'$ defined as follows $i'(phi)=phi,circ i$. Thus $i'$ is a linear map from $V'$ to $S'$. Then $dim,range(i')+dim,null(i')=dim,V'=dim,V$. Now my first claim is,
$it{Claim ;1}:$ $null(i')=S^0.$
$it{Pf}:$ If $phi in null(i')Leftrightarrow i'(phi)=0Leftrightarrow phi,circ i=0Leftrightarrow(phi,circ i)(s)=0,,forall sin SLeftrightarrowphi(i(s))=0,,forall sin S$ $Leftrightarrowphi(s)=0,, forall sin SLeftrightarrow phi in S^0,bullet$
Now we have $dim,range(i')+dim,S^0=dim,V$. This means that $dim,range(i')$ must be equal to $dim,S=dim,S'$. But $range,(i')subseteq S'$. So it means that $i'$ must be surjective i.e $range(i')=S'$. Indeed,
$it{Claim;2}:$ $range(i')=S'$.
$it{Pf}:$ Let $phi in S'$. So $phi:Srightarrow Bbb F$. We extend $phi $ to a functional $psi :Vrightarrow Bbb F$ such that $psi(s)=phi(s),,forall sin S$. So $i'(psi)=psi,circ i$. But $(psi, circ i)(s)=psi(i(s))=psi(s)=phi(s),,forall s in S$. Hence $psi, circ i = phi Leftrightarrow i'(psi)=phi$. So $S'=range(i'),bullet$.
Finally we have $dim,S'+dim,S^0=dim,VRightarrow dim,S+dim,S^0=dim,V.,lhd$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f404836%2fhow-to-show-annihilator-has-dimension-m-n-with-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $V$ a finite dimensional vector space with $dim;V=n$ and $V'$ be its dual space over a field $Bbb F$.
This can be proved in two ways:
$mathbf {Proof ;1}:$ Let $B_S={s_1,...,s_k}$ be a basis for the subspace $S$. So $dim;S=k$. Extend $B_S$ to a basis of $V$ say $B_V={s_1,...,s_k,s_{k+1},...,s_n}$. Let $B^{'}_V={f_1,...,f_n}$ be the dual basis to $B_V$ where $f_i(s_j)=delta_{i,j}$, the Kronecker Delta.
My Claim is that ${f_{k+1},...,f_n}$ is the basis of $N=S^0$. Indeed let $fin V'$ then $f=a_1f_1+...+a_nf_n$ for some $a_1,...,a_n in Bbb F$. Now $f(s_j)=a_jf_j(s_j)=a_j$. So $f=f(s_1)f_1+...+f(s_n)f_n$. If $iin {k+1,...,n}$ and $j in {1,...,k}$ then $f_i(s_j)=0$. So if $sin S$ then $s=b_1s_1+...+b_ns_k$ for some $b_1,....,b_kin Bbb F $. Then $f_i(s)=0; forall i in {k+1,...,n}$. Hence $f_{k+1},...,f_n in S^0$. Then $ span {f_{k+1},...,f_n }subseteq S^0$ since $S^0$ is a subspace. Now suppose $fin S^0$ then $f(s_1)=...=f(s_k)=0$ since $s_1,...,s_k in S$. Then writing $f=f(s_1)f_1+...+f(s_n)f_n$, the first $k$ terms are zero i.e $f=f(s_{k+1})f_{k+1}+...+f(s_n)f_n$. So $fin span{f_{k+1},...,f_n}$. Hence $S^0subseteq span{f_{k+1},...,f_n}$. Hence $S^0=span{f_{k+1},...,f_n}$, and of course ${f_{k+1},...,f_n}$ is linearly independent being a subset of a set of basis vectors.So $dim;S^0=n-k=dim;V-dim;S$.So $dim;V=dim;S + dim;S^0$ . $lhd$
$mathbf {Proof ;2}:$ Now suppose $i:Srightarrow V$ be the natural inclusion map i.e $i(s)=s,; forall s in S$. Consider its dual map $i':V'rightarrow S'$ defined as follows $i'(phi)=phi,circ i$. Thus $i'$ is a linear map from $V'$ to $S'$. Then $dim,range(i')+dim,null(i')=dim,V'=dim,V$. Now my first claim is,
$it{Claim ;1}:$ $null(i')=S^0.$
$it{Pf}:$ If $phi in null(i')Leftrightarrow i'(phi)=0Leftrightarrow phi,circ i=0Leftrightarrow(phi,circ i)(s)=0,,forall sin SLeftrightarrowphi(i(s))=0,,forall sin S$ $Leftrightarrowphi(s)=0,, forall sin SLeftrightarrow phi in S^0,bullet$
Now we have $dim,range(i')+dim,S^0=dim,V$. This means that $dim,range(i')$ must be equal to $dim,S=dim,S'$. But $range,(i')subseteq S'$. So it means that $i'$ must be surjective i.e $range(i')=S'$. Indeed,
$it{Claim;2}:$ $range(i')=S'$.
$it{Pf}:$ Let $phi in S'$. So $phi:Srightarrow Bbb F$. We extend $phi $ to a functional $psi :Vrightarrow Bbb F$ such that $psi(s)=phi(s),,forall sin S$. So $i'(psi)=psi,circ i$. But $(psi, circ i)(s)=psi(i(s))=psi(s)=phi(s),,forall s in S$. Hence $psi, circ i = phi Leftrightarrow i'(psi)=phi$. So $S'=range(i'),bullet$.
Finally we have $dim,S'+dim,S^0=dim,VRightarrow dim,S+dim,S^0=dim,V.,lhd$
$endgroup$
add a comment |
$begingroup$
Let $V$ a finite dimensional vector space with $dim;V=n$ and $V'$ be its dual space over a field $Bbb F$.
This can be proved in two ways:
$mathbf {Proof ;1}:$ Let $B_S={s_1,...,s_k}$ be a basis for the subspace $S$. So $dim;S=k$. Extend $B_S$ to a basis of $V$ say $B_V={s_1,...,s_k,s_{k+1},...,s_n}$. Let $B^{'}_V={f_1,...,f_n}$ be the dual basis to $B_V$ where $f_i(s_j)=delta_{i,j}$, the Kronecker Delta.
My Claim is that ${f_{k+1},...,f_n}$ is the basis of $N=S^0$. Indeed let $fin V'$ then $f=a_1f_1+...+a_nf_n$ for some $a_1,...,a_n in Bbb F$. Now $f(s_j)=a_jf_j(s_j)=a_j$. So $f=f(s_1)f_1+...+f(s_n)f_n$. If $iin {k+1,...,n}$ and $j in {1,...,k}$ then $f_i(s_j)=0$. So if $sin S$ then $s=b_1s_1+...+b_ns_k$ for some $b_1,....,b_kin Bbb F $. Then $f_i(s)=0; forall i in {k+1,...,n}$. Hence $f_{k+1},...,f_n in S^0$. Then $ span {f_{k+1},...,f_n }subseteq S^0$ since $S^0$ is a subspace. Now suppose $fin S^0$ then $f(s_1)=...=f(s_k)=0$ since $s_1,...,s_k in S$. Then writing $f=f(s_1)f_1+...+f(s_n)f_n$, the first $k$ terms are zero i.e $f=f(s_{k+1})f_{k+1}+...+f(s_n)f_n$. So $fin span{f_{k+1},...,f_n}$. Hence $S^0subseteq span{f_{k+1},...,f_n}$. Hence $S^0=span{f_{k+1},...,f_n}$, and of course ${f_{k+1},...,f_n}$ is linearly independent being a subset of a set of basis vectors.So $dim;S^0=n-k=dim;V-dim;S$.So $dim;V=dim;S + dim;S^0$ . $lhd$
$mathbf {Proof ;2}:$ Now suppose $i:Srightarrow V$ be the natural inclusion map i.e $i(s)=s,; forall s in S$. Consider its dual map $i':V'rightarrow S'$ defined as follows $i'(phi)=phi,circ i$. Thus $i'$ is a linear map from $V'$ to $S'$. Then $dim,range(i')+dim,null(i')=dim,V'=dim,V$. Now my first claim is,
$it{Claim ;1}:$ $null(i')=S^0.$
$it{Pf}:$ If $phi in null(i')Leftrightarrow i'(phi)=0Leftrightarrow phi,circ i=0Leftrightarrow(phi,circ i)(s)=0,,forall sin SLeftrightarrowphi(i(s))=0,,forall sin S$ $Leftrightarrowphi(s)=0,, forall sin SLeftrightarrow phi in S^0,bullet$
Now we have $dim,range(i')+dim,S^0=dim,V$. This means that $dim,range(i')$ must be equal to $dim,S=dim,S'$. But $range,(i')subseteq S'$. So it means that $i'$ must be surjective i.e $range(i')=S'$. Indeed,
$it{Claim;2}:$ $range(i')=S'$.
$it{Pf}:$ Let $phi in S'$. So $phi:Srightarrow Bbb F$. We extend $phi $ to a functional $psi :Vrightarrow Bbb F$ such that $psi(s)=phi(s),,forall sin S$. So $i'(psi)=psi,circ i$. But $(psi, circ i)(s)=psi(i(s))=psi(s)=phi(s),,forall s in S$. Hence $psi, circ i = phi Leftrightarrow i'(psi)=phi$. So $S'=range(i'),bullet$.
Finally we have $dim,S'+dim,S^0=dim,VRightarrow dim,S+dim,S^0=dim,V.,lhd$
$endgroup$
add a comment |
$begingroup$
Let $V$ a finite dimensional vector space with $dim;V=n$ and $V'$ be its dual space over a field $Bbb F$.
This can be proved in two ways:
$mathbf {Proof ;1}:$ Let $B_S={s_1,...,s_k}$ be a basis for the subspace $S$. So $dim;S=k$. Extend $B_S$ to a basis of $V$ say $B_V={s_1,...,s_k,s_{k+1},...,s_n}$. Let $B^{'}_V={f_1,...,f_n}$ be the dual basis to $B_V$ where $f_i(s_j)=delta_{i,j}$, the Kronecker Delta.
My Claim is that ${f_{k+1},...,f_n}$ is the basis of $N=S^0$. Indeed let $fin V'$ then $f=a_1f_1+...+a_nf_n$ for some $a_1,...,a_n in Bbb F$. Now $f(s_j)=a_jf_j(s_j)=a_j$. So $f=f(s_1)f_1+...+f(s_n)f_n$. If $iin {k+1,...,n}$ and $j in {1,...,k}$ then $f_i(s_j)=0$. So if $sin S$ then $s=b_1s_1+...+b_ns_k$ for some $b_1,....,b_kin Bbb F $. Then $f_i(s)=0; forall i in {k+1,...,n}$. Hence $f_{k+1},...,f_n in S^0$. Then $ span {f_{k+1},...,f_n }subseteq S^0$ since $S^0$ is a subspace. Now suppose $fin S^0$ then $f(s_1)=...=f(s_k)=0$ since $s_1,...,s_k in S$. Then writing $f=f(s_1)f_1+...+f(s_n)f_n$, the first $k$ terms are zero i.e $f=f(s_{k+1})f_{k+1}+...+f(s_n)f_n$. So $fin span{f_{k+1},...,f_n}$. Hence $S^0subseteq span{f_{k+1},...,f_n}$. Hence $S^0=span{f_{k+1},...,f_n}$, and of course ${f_{k+1},...,f_n}$ is linearly independent being a subset of a set of basis vectors.So $dim;S^0=n-k=dim;V-dim;S$.So $dim;V=dim;S + dim;S^0$ . $lhd$
$mathbf {Proof ;2}:$ Now suppose $i:Srightarrow V$ be the natural inclusion map i.e $i(s)=s,; forall s in S$. Consider its dual map $i':V'rightarrow S'$ defined as follows $i'(phi)=phi,circ i$. Thus $i'$ is a linear map from $V'$ to $S'$. Then $dim,range(i')+dim,null(i')=dim,V'=dim,V$. Now my first claim is,
$it{Claim ;1}:$ $null(i')=S^0.$
$it{Pf}:$ If $phi in null(i')Leftrightarrow i'(phi)=0Leftrightarrow phi,circ i=0Leftrightarrow(phi,circ i)(s)=0,,forall sin SLeftrightarrowphi(i(s))=0,,forall sin S$ $Leftrightarrowphi(s)=0,, forall sin SLeftrightarrow phi in S^0,bullet$
Now we have $dim,range(i')+dim,S^0=dim,V$. This means that $dim,range(i')$ must be equal to $dim,S=dim,S'$. But $range,(i')subseteq S'$. So it means that $i'$ must be surjective i.e $range(i')=S'$. Indeed,
$it{Claim;2}:$ $range(i')=S'$.
$it{Pf}:$ Let $phi in S'$. So $phi:Srightarrow Bbb F$. We extend $phi $ to a functional $psi :Vrightarrow Bbb F$ such that $psi(s)=phi(s),,forall sin S$. So $i'(psi)=psi,circ i$. But $(psi, circ i)(s)=psi(i(s))=psi(s)=phi(s),,forall s in S$. Hence $psi, circ i = phi Leftrightarrow i'(psi)=phi$. So $S'=range(i'),bullet$.
Finally we have $dim,S'+dim,S^0=dim,VRightarrow dim,S+dim,S^0=dim,V.,lhd$
$endgroup$
Let $V$ a finite dimensional vector space with $dim;V=n$ and $V'$ be its dual space over a field $Bbb F$.
This can be proved in two ways:
$mathbf {Proof ;1}:$ Let $B_S={s_1,...,s_k}$ be a basis for the subspace $S$. So $dim;S=k$. Extend $B_S$ to a basis of $V$ say $B_V={s_1,...,s_k,s_{k+1},...,s_n}$. Let $B^{'}_V={f_1,...,f_n}$ be the dual basis to $B_V$ where $f_i(s_j)=delta_{i,j}$, the Kronecker Delta.
My Claim is that ${f_{k+1},...,f_n}$ is the basis of $N=S^0$. Indeed let $fin V'$ then $f=a_1f_1+...+a_nf_n$ for some $a_1,...,a_n in Bbb F$. Now $f(s_j)=a_jf_j(s_j)=a_j$. So $f=f(s_1)f_1+...+f(s_n)f_n$. If $iin {k+1,...,n}$ and $j in {1,...,k}$ then $f_i(s_j)=0$. So if $sin S$ then $s=b_1s_1+...+b_ns_k$ for some $b_1,....,b_kin Bbb F $. Then $f_i(s)=0; forall i in {k+1,...,n}$. Hence $f_{k+1},...,f_n in S^0$. Then $ span {f_{k+1},...,f_n }subseteq S^0$ since $S^0$ is a subspace. Now suppose $fin S^0$ then $f(s_1)=...=f(s_k)=0$ since $s_1,...,s_k in S$. Then writing $f=f(s_1)f_1+...+f(s_n)f_n$, the first $k$ terms are zero i.e $f=f(s_{k+1})f_{k+1}+...+f(s_n)f_n$. So $fin span{f_{k+1},...,f_n}$. Hence $S^0subseteq span{f_{k+1},...,f_n}$. Hence $S^0=span{f_{k+1},...,f_n}$, and of course ${f_{k+1},...,f_n}$ is linearly independent being a subset of a set of basis vectors.So $dim;S^0=n-k=dim;V-dim;S$.So $dim;V=dim;S + dim;S^0$ . $lhd$
$mathbf {Proof ;2}:$ Now suppose $i:Srightarrow V$ be the natural inclusion map i.e $i(s)=s,; forall s in S$. Consider its dual map $i':V'rightarrow S'$ defined as follows $i'(phi)=phi,circ i$. Thus $i'$ is a linear map from $V'$ to $S'$. Then $dim,range(i')+dim,null(i')=dim,V'=dim,V$. Now my first claim is,
$it{Claim ;1}:$ $null(i')=S^0.$
$it{Pf}:$ If $phi in null(i')Leftrightarrow i'(phi)=0Leftrightarrow phi,circ i=0Leftrightarrow(phi,circ i)(s)=0,,forall sin SLeftrightarrowphi(i(s))=0,,forall sin S$ $Leftrightarrowphi(s)=0,, forall sin SLeftrightarrow phi in S^0,bullet$
Now we have $dim,range(i')+dim,S^0=dim,V$. This means that $dim,range(i')$ must be equal to $dim,S=dim,S'$. But $range,(i')subseteq S'$. So it means that $i'$ must be surjective i.e $range(i')=S'$. Indeed,
$it{Claim;2}:$ $range(i')=S'$.
$it{Pf}:$ Let $phi in S'$. So $phi:Srightarrow Bbb F$. We extend $phi $ to a functional $psi :Vrightarrow Bbb F$ such that $psi(s)=phi(s),,forall sin S$. So $i'(psi)=psi,circ i$. But $(psi, circ i)(s)=psi(i(s))=psi(s)=phi(s),,forall s in S$. Hence $psi, circ i = phi Leftrightarrow i'(psi)=phi$. So $S'=range(i'),bullet$.
Finally we have $dim,S'+dim,S^0=dim,VRightarrow dim,S+dim,S^0=dim,V.,lhd$
answered Oct 16 '17 at 16:10
Arpan DasArpan Das
1078
1078
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f404836%2fhow-to-show-annihilator-has-dimension-m-n-with-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
You seem to assume $dim V < infty$ in your statement, as otherwise $dim V = dim V^*$ won't hold.
$endgroup$
– martini
May 28 '13 at 15:44
1
$begingroup$
I assume you mean $dim V<infty$. The restriction $phi_{|S}$ of a linear functional $phiin V^*$ yields a functional in $S^*$. This gives a surjective linear map $V^*longrightarrow S^*$ whose nullspace is the annihilator of $S$. Apply the rank-nullity theorem (or the first isomorphism theorem if you prefer).
$endgroup$
– Julien
May 28 '13 at 15:46
$begingroup$
Take a look at this post.
$endgroup$
– H. R.
Aug 9 '16 at 19:47