Evaluating the value of the roots of the expression
$begingroup$
I'm attempting this question below, I understand the method when its squared but not cubed. I evaluated $a^2 + b^2 + c^2$ as $(a + b + c)^2 -2(ab + ac + bc)$. I tried to obtain the answer by guess and check, changing a few of the powers around to try and work backwards but to no success. The answer for the question below is 23, and based upon the responses provided $a^4 + b^4 + c^4$ should be a breeze also? Thanks
Q: $x^3 - 2x^2 - 3x + 1 = 0$
$a^3 + b^3 +c^3 =?$
polynomials roots
$endgroup$
add a comment |
$begingroup$
I'm attempting this question below, I understand the method when its squared but not cubed. I evaluated $a^2 + b^2 + c^2$ as $(a + b + c)^2 -2(ab + ac + bc)$. I tried to obtain the answer by guess and check, changing a few of the powers around to try and work backwards but to no success. The answer for the question below is 23, and based upon the responses provided $a^4 + b^4 + c^4$ should be a breeze also? Thanks
Q: $x^3 - 2x^2 - 3x + 1 = 0$
$a^3 + b^3 +c^3 =?$
polynomials roots
$endgroup$
1
$begingroup$
a,b,c are the roots, right?
$endgroup$
– Hello_World
Jan 6 at 0:12
$begingroup$
Yes, apologies, I added a y instead of a c above.
$endgroup$
– Zach
Jan 6 at 0:13
add a comment |
$begingroup$
I'm attempting this question below, I understand the method when its squared but not cubed. I evaluated $a^2 + b^2 + c^2$ as $(a + b + c)^2 -2(ab + ac + bc)$. I tried to obtain the answer by guess and check, changing a few of the powers around to try and work backwards but to no success. The answer for the question below is 23, and based upon the responses provided $a^4 + b^4 + c^4$ should be a breeze also? Thanks
Q: $x^3 - 2x^2 - 3x + 1 = 0$
$a^3 + b^3 +c^3 =?$
polynomials roots
$endgroup$
I'm attempting this question below, I understand the method when its squared but not cubed. I evaluated $a^2 + b^2 + c^2$ as $(a + b + c)^2 -2(ab + ac + bc)$. I tried to obtain the answer by guess and check, changing a few of the powers around to try and work backwards but to no success. The answer for the question below is 23, and based upon the responses provided $a^4 + b^4 + c^4$ should be a breeze also? Thanks
Q: $x^3 - 2x^2 - 3x + 1 = 0$
$a^3 + b^3 +c^3 =?$
polynomials roots
polynomials roots
edited Jan 6 at 0:13
Zach
asked Jan 6 at 0:11
ZachZach
365
365
1
$begingroup$
a,b,c are the roots, right?
$endgroup$
– Hello_World
Jan 6 at 0:12
$begingroup$
Yes, apologies, I added a y instead of a c above.
$endgroup$
– Zach
Jan 6 at 0:13
add a comment |
1
$begingroup$
a,b,c are the roots, right?
$endgroup$
– Hello_World
Jan 6 at 0:12
$begingroup$
Yes, apologies, I added a y instead of a c above.
$endgroup$
– Zach
Jan 6 at 0:13
1
1
$begingroup$
a,b,c are the roots, right?
$endgroup$
– Hello_World
Jan 6 at 0:12
$begingroup$
a,b,c are the roots, right?
$endgroup$
– Hello_World
Jan 6 at 0:12
$begingroup$
Yes, apologies, I added a y instead of a c above.
$endgroup$
– Zach
Jan 6 at 0:13
$begingroup$
Yes, apologies, I added a y instead of a c above.
$endgroup$
– Zach
Jan 6 at 0:13
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
I suggest that you check this out: https://en.m.wikipedia.org/wiki/Newton%27s_identities
Now, the idea, as you guess, is to write $a^3+b^3+c^3$ as a function of the symmetric elementary polynomials.
Now, $a^3=2a^2+3a-1$, same for $b,c$.
Thus $a^3+b^3+c^3=2(a^2+b^2+c^2)+3(a+b+c)-3$, hence
$a^3+b^3+c^3=2(a+b+c)^2+3(a+b+c)-4(ab+bc+ca)-3$.
Finally, $a^3+b^3+c^3=2*(2)^2+3*(2)-4*(-3)-3=23$.
$endgroup$
add a comment |
$begingroup$
$$x^3+1=2x^2+3x$$
Cubing both sides $$(x^3+1)^3=(2x^2+3x)^3=(2x^2)^3+(3x)^3+3(2x^2)(3x)(2x^2+3x)$$
Setting $x^3=y$ $$(y+1)^3=8y^2+27y+18y(y+1)$$
$$iff y^3+y^2(3-8-18)+y(cdots)+cdots=0$$ whose roots are $a^3,b^3,c^3$
$$a^3+b^3+c^3=dfrac{23}1$$
$endgroup$
add a comment |
$begingroup$
By Vieta's formulas:
$$a+b+c=2, ab+bc+ca=-3, abc=-1.$$
Then you can use the formulas:
$$begin{align}A=a^2+b^2+c^2&=(a+b+c)^2-2(ab+bc+ca)=\
&=2^2-2(-3)=\
&=10.end{align}$$
$$begin{align}B=a^3+b^3+c^3&=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+3abc=\
&=(a+b+c)[(a+b+c)^2-3(ab+bc+ca)]+3abc=\
&=2(2^2-3(-3))+3(-1)=\
&=23.end{align}$$
$$begin{align}C=a^4+b^4+c^4&=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)=\
&=A^2-2[(ab+bc+ca)^2-2abc(a+b+c)]=\
&=10^2-2[(-3)^2-2(-1)2]=\
&=126.end{align}$$
$$begin{align}D=a^5+b^5+c^5&=(a+b+c)^5-\
& 5(a+b)(b+c)(c+a)(a^2+b^2+c^2+ab+bc+ca)=\
&=2^5-frac{5[(a+b+c)^3-a^3-b^3-c^3]}{3}(a^2+b^2+c^2+ab+bc+ca)=\
&=2^5-frac{5[2^3-B]}{3}(A+(-3))=\
&=2^5-frac{5[-15]}{3}(7)=\
&=207.end{align}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063351%2fevaluating-the-value-of-the-roots-of-the-expression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I suggest that you check this out: https://en.m.wikipedia.org/wiki/Newton%27s_identities
Now, the idea, as you guess, is to write $a^3+b^3+c^3$ as a function of the symmetric elementary polynomials.
Now, $a^3=2a^2+3a-1$, same for $b,c$.
Thus $a^3+b^3+c^3=2(a^2+b^2+c^2)+3(a+b+c)-3$, hence
$a^3+b^3+c^3=2(a+b+c)^2+3(a+b+c)-4(ab+bc+ca)-3$.
Finally, $a^3+b^3+c^3=2*(2)^2+3*(2)-4*(-3)-3=23$.
$endgroup$
add a comment |
$begingroup$
I suggest that you check this out: https://en.m.wikipedia.org/wiki/Newton%27s_identities
Now, the idea, as you guess, is to write $a^3+b^3+c^3$ as a function of the symmetric elementary polynomials.
Now, $a^3=2a^2+3a-1$, same for $b,c$.
Thus $a^3+b^3+c^3=2(a^2+b^2+c^2)+3(a+b+c)-3$, hence
$a^3+b^3+c^3=2(a+b+c)^2+3(a+b+c)-4(ab+bc+ca)-3$.
Finally, $a^3+b^3+c^3=2*(2)^2+3*(2)-4*(-3)-3=23$.
$endgroup$
add a comment |
$begingroup$
I suggest that you check this out: https://en.m.wikipedia.org/wiki/Newton%27s_identities
Now, the idea, as you guess, is to write $a^3+b^3+c^3$ as a function of the symmetric elementary polynomials.
Now, $a^3=2a^2+3a-1$, same for $b,c$.
Thus $a^3+b^3+c^3=2(a^2+b^2+c^2)+3(a+b+c)-3$, hence
$a^3+b^3+c^3=2(a+b+c)^2+3(a+b+c)-4(ab+bc+ca)-3$.
Finally, $a^3+b^3+c^3=2*(2)^2+3*(2)-4*(-3)-3=23$.
$endgroup$
I suggest that you check this out: https://en.m.wikipedia.org/wiki/Newton%27s_identities
Now, the idea, as you guess, is to write $a^3+b^3+c^3$ as a function of the symmetric elementary polynomials.
Now, $a^3=2a^2+3a-1$, same for $b,c$.
Thus $a^3+b^3+c^3=2(a^2+b^2+c^2)+3(a+b+c)-3$, hence
$a^3+b^3+c^3=2(a+b+c)^2+3(a+b+c)-4(ab+bc+ca)-3$.
Finally, $a^3+b^3+c^3=2*(2)^2+3*(2)-4*(-3)-3=23$.
answered Jan 6 at 0:20
MindlackMindlack
3,81518
3,81518
add a comment |
add a comment |
$begingroup$
$$x^3+1=2x^2+3x$$
Cubing both sides $$(x^3+1)^3=(2x^2+3x)^3=(2x^2)^3+(3x)^3+3(2x^2)(3x)(2x^2+3x)$$
Setting $x^3=y$ $$(y+1)^3=8y^2+27y+18y(y+1)$$
$$iff y^3+y^2(3-8-18)+y(cdots)+cdots=0$$ whose roots are $a^3,b^3,c^3$
$$a^3+b^3+c^3=dfrac{23}1$$
$endgroup$
add a comment |
$begingroup$
$$x^3+1=2x^2+3x$$
Cubing both sides $$(x^3+1)^3=(2x^2+3x)^3=(2x^2)^3+(3x)^3+3(2x^2)(3x)(2x^2+3x)$$
Setting $x^3=y$ $$(y+1)^3=8y^2+27y+18y(y+1)$$
$$iff y^3+y^2(3-8-18)+y(cdots)+cdots=0$$ whose roots are $a^3,b^3,c^3$
$$a^3+b^3+c^3=dfrac{23}1$$
$endgroup$
add a comment |
$begingroup$
$$x^3+1=2x^2+3x$$
Cubing both sides $$(x^3+1)^3=(2x^2+3x)^3=(2x^2)^3+(3x)^3+3(2x^2)(3x)(2x^2+3x)$$
Setting $x^3=y$ $$(y+1)^3=8y^2+27y+18y(y+1)$$
$$iff y^3+y^2(3-8-18)+y(cdots)+cdots=0$$ whose roots are $a^3,b^3,c^3$
$$a^3+b^3+c^3=dfrac{23}1$$
$endgroup$
$$x^3+1=2x^2+3x$$
Cubing both sides $$(x^3+1)^3=(2x^2+3x)^3=(2x^2)^3+(3x)^3+3(2x^2)(3x)(2x^2+3x)$$
Setting $x^3=y$ $$(y+1)^3=8y^2+27y+18y(y+1)$$
$$iff y^3+y^2(3-8-18)+y(cdots)+cdots=0$$ whose roots are $a^3,b^3,c^3$
$$a^3+b^3+c^3=dfrac{23}1$$
answered Jan 6 at 10:15
lab bhattacharjeelab bhattacharjee
225k15157275
225k15157275
add a comment |
add a comment |
$begingroup$
By Vieta's formulas:
$$a+b+c=2, ab+bc+ca=-3, abc=-1.$$
Then you can use the formulas:
$$begin{align}A=a^2+b^2+c^2&=(a+b+c)^2-2(ab+bc+ca)=\
&=2^2-2(-3)=\
&=10.end{align}$$
$$begin{align}B=a^3+b^3+c^3&=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+3abc=\
&=(a+b+c)[(a+b+c)^2-3(ab+bc+ca)]+3abc=\
&=2(2^2-3(-3))+3(-1)=\
&=23.end{align}$$
$$begin{align}C=a^4+b^4+c^4&=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)=\
&=A^2-2[(ab+bc+ca)^2-2abc(a+b+c)]=\
&=10^2-2[(-3)^2-2(-1)2]=\
&=126.end{align}$$
$$begin{align}D=a^5+b^5+c^5&=(a+b+c)^5-\
& 5(a+b)(b+c)(c+a)(a^2+b^2+c^2+ab+bc+ca)=\
&=2^5-frac{5[(a+b+c)^3-a^3-b^3-c^3]}{3}(a^2+b^2+c^2+ab+bc+ca)=\
&=2^5-frac{5[2^3-B]}{3}(A+(-3))=\
&=2^5-frac{5[-15]}{3}(7)=\
&=207.end{align}$$
$endgroup$
add a comment |
$begingroup$
By Vieta's formulas:
$$a+b+c=2, ab+bc+ca=-3, abc=-1.$$
Then you can use the formulas:
$$begin{align}A=a^2+b^2+c^2&=(a+b+c)^2-2(ab+bc+ca)=\
&=2^2-2(-3)=\
&=10.end{align}$$
$$begin{align}B=a^3+b^3+c^3&=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+3abc=\
&=(a+b+c)[(a+b+c)^2-3(ab+bc+ca)]+3abc=\
&=2(2^2-3(-3))+3(-1)=\
&=23.end{align}$$
$$begin{align}C=a^4+b^4+c^4&=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)=\
&=A^2-2[(ab+bc+ca)^2-2abc(a+b+c)]=\
&=10^2-2[(-3)^2-2(-1)2]=\
&=126.end{align}$$
$$begin{align}D=a^5+b^5+c^5&=(a+b+c)^5-\
& 5(a+b)(b+c)(c+a)(a^2+b^2+c^2+ab+bc+ca)=\
&=2^5-frac{5[(a+b+c)^3-a^3-b^3-c^3]}{3}(a^2+b^2+c^2+ab+bc+ca)=\
&=2^5-frac{5[2^3-B]}{3}(A+(-3))=\
&=2^5-frac{5[-15]}{3}(7)=\
&=207.end{align}$$
$endgroup$
add a comment |
$begingroup$
By Vieta's formulas:
$$a+b+c=2, ab+bc+ca=-3, abc=-1.$$
Then you can use the formulas:
$$begin{align}A=a^2+b^2+c^2&=(a+b+c)^2-2(ab+bc+ca)=\
&=2^2-2(-3)=\
&=10.end{align}$$
$$begin{align}B=a^3+b^3+c^3&=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+3abc=\
&=(a+b+c)[(a+b+c)^2-3(ab+bc+ca)]+3abc=\
&=2(2^2-3(-3))+3(-1)=\
&=23.end{align}$$
$$begin{align}C=a^4+b^4+c^4&=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)=\
&=A^2-2[(ab+bc+ca)^2-2abc(a+b+c)]=\
&=10^2-2[(-3)^2-2(-1)2]=\
&=126.end{align}$$
$$begin{align}D=a^5+b^5+c^5&=(a+b+c)^5-\
& 5(a+b)(b+c)(c+a)(a^2+b^2+c^2+ab+bc+ca)=\
&=2^5-frac{5[(a+b+c)^3-a^3-b^3-c^3]}{3}(a^2+b^2+c^2+ab+bc+ca)=\
&=2^5-frac{5[2^3-B]}{3}(A+(-3))=\
&=2^5-frac{5[-15]}{3}(7)=\
&=207.end{align}$$
$endgroup$
By Vieta's formulas:
$$a+b+c=2, ab+bc+ca=-3, abc=-1.$$
Then you can use the formulas:
$$begin{align}A=a^2+b^2+c^2&=(a+b+c)^2-2(ab+bc+ca)=\
&=2^2-2(-3)=\
&=10.end{align}$$
$$begin{align}B=a^3+b^3+c^3&=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+3abc=\
&=(a+b+c)[(a+b+c)^2-3(ab+bc+ca)]+3abc=\
&=2(2^2-3(-3))+3(-1)=\
&=23.end{align}$$
$$begin{align}C=a^4+b^4+c^4&=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)=\
&=A^2-2[(ab+bc+ca)^2-2abc(a+b+c)]=\
&=10^2-2[(-3)^2-2(-1)2]=\
&=126.end{align}$$
$$begin{align}D=a^5+b^5+c^5&=(a+b+c)^5-\
& 5(a+b)(b+c)(c+a)(a^2+b^2+c^2+ab+bc+ca)=\
&=2^5-frac{5[(a+b+c)^3-a^3-b^3-c^3]}{3}(a^2+b^2+c^2+ab+bc+ca)=\
&=2^5-frac{5[2^3-B]}{3}(A+(-3))=\
&=2^5-frac{5[-15]}{3}(7)=\
&=207.end{align}$$
answered Jan 6 at 11:56
farruhotafarruhota
20.2k2738
20.2k2738
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063351%2fevaluating-the-value-of-the-roots-of-the-expression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
a,b,c are the roots, right?
$endgroup$
– Hello_World
Jan 6 at 0:12
$begingroup$
Yes, apologies, I added a y instead of a c above.
$endgroup$
– Zach
Jan 6 at 0:13