On the modes of convergence of the series $sumlimits_{k=1}^{infty} frac{1}{k} sin left(frac{x}{k+1} right)$












2












$begingroup$


Show that




$$f(x) = sum_{k=1}^{infty} dfrac{1}{k} sin left(dfrac{x}{k+1}right).$$




converges pointwise on $mathbb{R}$ and uniformly on each bounded interval in $mathbb{R}$, to a differentiable function $f$ which satisifies $vert f(x) vert leq vert x vert$ and $vert f'(x) vert leq 1$.



This problem comes from a section that covers the Weierstrass M-Test and Dirichlet's Test. I am not sure where to begin with this. Analysis really isn't my thing at this point.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Are you trying to prove those statements about $f$, or something else?
    $endgroup$
    – zibadawa timmy
    Nov 4 '13 at 18:45










  • $begingroup$
    Yes, sorry I left that off
    $endgroup$
    – MFD55012
    Nov 4 '13 at 18:50










  • $begingroup$
    Have you tried using those tests in any fashion?
    $endgroup$
    – zibadawa timmy
    Nov 4 '13 at 18:54










  • $begingroup$
    Note that $|sin t|leq |t|$ for every real number $t$.
    $endgroup$
    – Julien
    Nov 4 '13 at 18:57










  • $begingroup$
    I am trying to use Dirichlet's now.
    $endgroup$
    – MFD55012
    Nov 4 '13 at 19:05
















2












$begingroup$


Show that




$$f(x) = sum_{k=1}^{infty} dfrac{1}{k} sin left(dfrac{x}{k+1}right).$$




converges pointwise on $mathbb{R}$ and uniformly on each bounded interval in $mathbb{R}$, to a differentiable function $f$ which satisifies $vert f(x) vert leq vert x vert$ and $vert f'(x) vert leq 1$.



This problem comes from a section that covers the Weierstrass M-Test and Dirichlet's Test. I am not sure where to begin with this. Analysis really isn't my thing at this point.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Are you trying to prove those statements about $f$, or something else?
    $endgroup$
    – zibadawa timmy
    Nov 4 '13 at 18:45










  • $begingroup$
    Yes, sorry I left that off
    $endgroup$
    – MFD55012
    Nov 4 '13 at 18:50










  • $begingroup$
    Have you tried using those tests in any fashion?
    $endgroup$
    – zibadawa timmy
    Nov 4 '13 at 18:54










  • $begingroup$
    Note that $|sin t|leq |t|$ for every real number $t$.
    $endgroup$
    – Julien
    Nov 4 '13 at 18:57










  • $begingroup$
    I am trying to use Dirichlet's now.
    $endgroup$
    – MFD55012
    Nov 4 '13 at 19:05














2












2








2





$begingroup$


Show that




$$f(x) = sum_{k=1}^{infty} dfrac{1}{k} sin left(dfrac{x}{k+1}right).$$




converges pointwise on $mathbb{R}$ and uniformly on each bounded interval in $mathbb{R}$, to a differentiable function $f$ which satisifies $vert f(x) vert leq vert x vert$ and $vert f'(x) vert leq 1$.



This problem comes from a section that covers the Weierstrass M-Test and Dirichlet's Test. I am not sure where to begin with this. Analysis really isn't my thing at this point.










share|cite|improve this question











$endgroup$




Show that




$$f(x) = sum_{k=1}^{infty} dfrac{1}{k} sin left(dfrac{x}{k+1}right).$$




converges pointwise on $mathbb{R}$ and uniformly on each bounded interval in $mathbb{R}$, to a differentiable function $f$ which satisifies $vert f(x) vert leq vert x vert$ and $vert f'(x) vert leq 1$.



This problem comes from a section that covers the Weierstrass M-Test and Dirichlet's Test. I am not sure where to begin with this. Analysis really isn't my thing at this point.







real-analysis sequences-and-series analysis uniform-convergence pointwise-convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 30 '18 at 21:11









Did

247k23222457




247k23222457










asked Nov 4 '13 at 18:37









MFD55012MFD55012

604




604












  • $begingroup$
    Are you trying to prove those statements about $f$, or something else?
    $endgroup$
    – zibadawa timmy
    Nov 4 '13 at 18:45










  • $begingroup$
    Yes, sorry I left that off
    $endgroup$
    – MFD55012
    Nov 4 '13 at 18:50










  • $begingroup$
    Have you tried using those tests in any fashion?
    $endgroup$
    – zibadawa timmy
    Nov 4 '13 at 18:54










  • $begingroup$
    Note that $|sin t|leq |t|$ for every real number $t$.
    $endgroup$
    – Julien
    Nov 4 '13 at 18:57










  • $begingroup$
    I am trying to use Dirichlet's now.
    $endgroup$
    – MFD55012
    Nov 4 '13 at 19:05


















  • $begingroup$
    Are you trying to prove those statements about $f$, or something else?
    $endgroup$
    – zibadawa timmy
    Nov 4 '13 at 18:45










  • $begingroup$
    Yes, sorry I left that off
    $endgroup$
    – MFD55012
    Nov 4 '13 at 18:50










  • $begingroup$
    Have you tried using those tests in any fashion?
    $endgroup$
    – zibadawa timmy
    Nov 4 '13 at 18:54










  • $begingroup$
    Note that $|sin t|leq |t|$ for every real number $t$.
    $endgroup$
    – Julien
    Nov 4 '13 at 18:57










  • $begingroup$
    I am trying to use Dirichlet's now.
    $endgroup$
    – MFD55012
    Nov 4 '13 at 19:05
















$begingroup$
Are you trying to prove those statements about $f$, or something else?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:45




$begingroup$
Are you trying to prove those statements about $f$, or something else?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:45












$begingroup$
Yes, sorry I left that off
$endgroup$
– MFD55012
Nov 4 '13 at 18:50




$begingroup$
Yes, sorry I left that off
$endgroup$
– MFD55012
Nov 4 '13 at 18:50












$begingroup$
Have you tried using those tests in any fashion?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:54




$begingroup$
Have you tried using those tests in any fashion?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:54












$begingroup$
Note that $|sin t|leq |t|$ for every real number $t$.
$endgroup$
– Julien
Nov 4 '13 at 18:57




$begingroup$
Note that $|sin t|leq |t|$ for every real number $t$.
$endgroup$
– Julien
Nov 4 '13 at 18:57












$begingroup$
I am trying to use Dirichlet's now.
$endgroup$
– MFD55012
Nov 4 '13 at 19:05




$begingroup$
I am trying to use Dirichlet's now.
$endgroup$
– MFD55012
Nov 4 '13 at 19:05










1 Answer
1






active

oldest

votes


















2












$begingroup$

I'm sorry you're just getting your answer in five years. Lets have a look at this;



Let $[a,b]subseteq Bbb{R}$ be any bounded interval, $xin [a,b]$ and $kin Bbb{N},$ then



begin{align} left|dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|leq dfrac{1}{k}left|dfrac{x}{k+1}right|=dfrac{left|xright|}{k(k+1)} leq dfrac{left|xright|}{k(k+1)} leq dfrac{c}{k(k+1)} , end{align}
where $c:=max{|a|,|b|}quad$ [see If $xin[a,b],$ then $|x|leq max{|a|,|b|}$. Since
begin{align} sum^{infty}_{k=1}dfrac{c}{k(k+1)} , end{align}
converges, then,
begin{align} sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right) end{align}
converges uniformly on $[a,b],$ by Weierstrass-M test. Since $[a,b]subseteq Bbb{R}$ was arbitrary, then uniform convergence is true on each bounded interval in $Bbb{R}$ which also implies pointwise convergence on $Bbb{R}$. Now, for arbitrary $xinBbb{R},$



begin{align} left|f(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|\&leq sum^{infty}_{k=1} dfrac{1}{k}left|dfrac{x}{k+1}right|\&= sum^{infty}_{k=1}dfrac{left|xright|}{k(k+1)}\&= left|xright|sum^{infty}_{k=1}dfrac{1}{k(k+1)}\&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= left|xright|limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= left|xright|. end{align}
Since the series converges uniformly on $[a,b],$ then we can differentiate term-term on $[a,b].$ Thus, for $xin [a,b]$
begin{align} f'(x)&=dfrac{d}{dx}sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)\&=sum^{infty}_{k=1}dfrac{1}{k}dfrac{d}{dx}left[sinleft(dfrac{x}{k+1}right)right]\&=sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right) , end{align}
which implies that
begin{align} left|f'(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right)right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)left|cosleft(dfrac{x}{k+1}right) right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= 1 end{align}
as required.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f551875%2fon-the-modes-of-convergence-of-the-series-sum-limits-k-1-infty-frac1k%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    I'm sorry you're just getting your answer in five years. Lets have a look at this;



    Let $[a,b]subseteq Bbb{R}$ be any bounded interval, $xin [a,b]$ and $kin Bbb{N},$ then



    begin{align} left|dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|leq dfrac{1}{k}left|dfrac{x}{k+1}right|=dfrac{left|xright|}{k(k+1)} leq dfrac{left|xright|}{k(k+1)} leq dfrac{c}{k(k+1)} , end{align}
    where $c:=max{|a|,|b|}quad$ [see If $xin[a,b],$ then $|x|leq max{|a|,|b|}$. Since
    begin{align} sum^{infty}_{k=1}dfrac{c}{k(k+1)} , end{align}
    converges, then,
    begin{align} sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right) end{align}
    converges uniformly on $[a,b],$ by Weierstrass-M test. Since $[a,b]subseteq Bbb{R}$ was arbitrary, then uniform convergence is true on each bounded interval in $Bbb{R}$ which also implies pointwise convergence on $Bbb{R}$. Now, for arbitrary $xinBbb{R},$



    begin{align} left|f(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|\&leq sum^{infty}_{k=1} dfrac{1}{k}left|dfrac{x}{k+1}right|\&= sum^{infty}_{k=1}dfrac{left|xright|}{k(k+1)}\&= left|xright|sum^{infty}_{k=1}dfrac{1}{k(k+1)}\&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= left|xright|limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= left|xright|. end{align}
    Since the series converges uniformly on $[a,b],$ then we can differentiate term-term on $[a,b].$ Thus, for $xin [a,b]$
    begin{align} f'(x)&=dfrac{d}{dx}sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)\&=sum^{infty}_{k=1}dfrac{1}{k}dfrac{d}{dx}left[sinleft(dfrac{x}{k+1}right)right]\&=sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right) , end{align}
    which implies that
    begin{align} left|f'(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right)right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)left|cosleft(dfrac{x}{k+1}right) right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= 1 end{align}
    as required.






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      I'm sorry you're just getting your answer in five years. Lets have a look at this;



      Let $[a,b]subseteq Bbb{R}$ be any bounded interval, $xin [a,b]$ and $kin Bbb{N},$ then



      begin{align} left|dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|leq dfrac{1}{k}left|dfrac{x}{k+1}right|=dfrac{left|xright|}{k(k+1)} leq dfrac{left|xright|}{k(k+1)} leq dfrac{c}{k(k+1)} , end{align}
      where $c:=max{|a|,|b|}quad$ [see If $xin[a,b],$ then $|x|leq max{|a|,|b|}$. Since
      begin{align} sum^{infty}_{k=1}dfrac{c}{k(k+1)} , end{align}
      converges, then,
      begin{align} sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right) end{align}
      converges uniformly on $[a,b],$ by Weierstrass-M test. Since $[a,b]subseteq Bbb{R}$ was arbitrary, then uniform convergence is true on each bounded interval in $Bbb{R}$ which also implies pointwise convergence on $Bbb{R}$. Now, for arbitrary $xinBbb{R},$



      begin{align} left|f(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|\&leq sum^{infty}_{k=1} dfrac{1}{k}left|dfrac{x}{k+1}right|\&= sum^{infty}_{k=1}dfrac{left|xright|}{k(k+1)}\&= left|xright|sum^{infty}_{k=1}dfrac{1}{k(k+1)}\&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= left|xright|limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= left|xright|. end{align}
      Since the series converges uniformly on $[a,b],$ then we can differentiate term-term on $[a,b].$ Thus, for $xin [a,b]$
      begin{align} f'(x)&=dfrac{d}{dx}sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)\&=sum^{infty}_{k=1}dfrac{1}{k}dfrac{d}{dx}left[sinleft(dfrac{x}{k+1}right)right]\&=sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right) , end{align}
      which implies that
      begin{align} left|f'(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right)right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)left|cosleft(dfrac{x}{k+1}right) right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= 1 end{align}
      as required.






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        I'm sorry you're just getting your answer in five years. Lets have a look at this;



        Let $[a,b]subseteq Bbb{R}$ be any bounded interval, $xin [a,b]$ and $kin Bbb{N},$ then



        begin{align} left|dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|leq dfrac{1}{k}left|dfrac{x}{k+1}right|=dfrac{left|xright|}{k(k+1)} leq dfrac{left|xright|}{k(k+1)} leq dfrac{c}{k(k+1)} , end{align}
        where $c:=max{|a|,|b|}quad$ [see If $xin[a,b],$ then $|x|leq max{|a|,|b|}$. Since
        begin{align} sum^{infty}_{k=1}dfrac{c}{k(k+1)} , end{align}
        converges, then,
        begin{align} sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right) end{align}
        converges uniformly on $[a,b],$ by Weierstrass-M test. Since $[a,b]subseteq Bbb{R}$ was arbitrary, then uniform convergence is true on each bounded interval in $Bbb{R}$ which also implies pointwise convergence on $Bbb{R}$. Now, for arbitrary $xinBbb{R},$



        begin{align} left|f(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|\&leq sum^{infty}_{k=1} dfrac{1}{k}left|dfrac{x}{k+1}right|\&= sum^{infty}_{k=1}dfrac{left|xright|}{k(k+1)}\&= left|xright|sum^{infty}_{k=1}dfrac{1}{k(k+1)}\&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= left|xright|limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= left|xright|. end{align}
        Since the series converges uniformly on $[a,b],$ then we can differentiate term-term on $[a,b].$ Thus, for $xin [a,b]$
        begin{align} f'(x)&=dfrac{d}{dx}sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)\&=sum^{infty}_{k=1}dfrac{1}{k}dfrac{d}{dx}left[sinleft(dfrac{x}{k+1}right)right]\&=sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right) , end{align}
        which implies that
        begin{align} left|f'(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right)right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)left|cosleft(dfrac{x}{k+1}right) right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= 1 end{align}
        as required.






        share|cite|improve this answer











        $endgroup$



        I'm sorry you're just getting your answer in five years. Lets have a look at this;



        Let $[a,b]subseteq Bbb{R}$ be any bounded interval, $xin [a,b]$ and $kin Bbb{N},$ then



        begin{align} left|dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|leq dfrac{1}{k}left|dfrac{x}{k+1}right|=dfrac{left|xright|}{k(k+1)} leq dfrac{left|xright|}{k(k+1)} leq dfrac{c}{k(k+1)} , end{align}
        where $c:=max{|a|,|b|}quad$ [see If $xin[a,b],$ then $|x|leq max{|a|,|b|}$. Since
        begin{align} sum^{infty}_{k=1}dfrac{c}{k(k+1)} , end{align}
        converges, then,
        begin{align} sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right) end{align}
        converges uniformly on $[a,b],$ by Weierstrass-M test. Since $[a,b]subseteq Bbb{R}$ was arbitrary, then uniform convergence is true on each bounded interval in $Bbb{R}$ which also implies pointwise convergence on $Bbb{R}$. Now, for arbitrary $xinBbb{R},$



        begin{align} left|f(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|\&leq sum^{infty}_{k=1} dfrac{1}{k}left|dfrac{x}{k+1}right|\&= sum^{infty}_{k=1}dfrac{left|xright|}{k(k+1)}\&= left|xright|sum^{infty}_{k=1}dfrac{1}{k(k+1)}\&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= left|xright|limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= left|xright|. end{align}
        Since the series converges uniformly on $[a,b],$ then we can differentiate term-term on $[a,b].$ Thus, for $xin [a,b]$
        begin{align} f'(x)&=dfrac{d}{dx}sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)\&=sum^{infty}_{k=1}dfrac{1}{k}dfrac{d}{dx}left[sinleft(dfrac{x}{k+1}right)right]\&=sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right) , end{align}
        which implies that
        begin{align} left|f'(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right)right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)left|cosleft(dfrac{x}{k+1}right) right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= 1 end{align}
        as required.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 30 '18 at 21:50

























        answered Dec 30 '18 at 20:54









        Omojola MichealOmojola Micheal

        1,802324




        1,802324






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f551875%2fon-the-modes-of-convergence-of-the-series-sum-limits-k-1-infty-frac1k%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            File:DeusFollowingSea.jpg