On the modes of convergence of the series $sumlimits_{k=1}^{infty} frac{1}{k} sin left(frac{x}{k+1} right)$
$begingroup$
Show that
$$f(x) = sum_{k=1}^{infty} dfrac{1}{k} sin left(dfrac{x}{k+1}right).$$
converges pointwise on $mathbb{R}$ and uniformly on each bounded interval in $mathbb{R}$, to a differentiable function $f$ which satisifies $vert f(x) vert leq vert x vert$ and $vert f'(x) vert leq 1$.
This problem comes from a section that covers the Weierstrass M-Test and Dirichlet's Test. I am not sure where to begin with this. Analysis really isn't my thing at this point.
real-analysis sequences-and-series analysis uniform-convergence pointwise-convergence
$endgroup$
|
show 1 more comment
$begingroup$
Show that
$$f(x) = sum_{k=1}^{infty} dfrac{1}{k} sin left(dfrac{x}{k+1}right).$$
converges pointwise on $mathbb{R}$ and uniformly on each bounded interval in $mathbb{R}$, to a differentiable function $f$ which satisifies $vert f(x) vert leq vert x vert$ and $vert f'(x) vert leq 1$.
This problem comes from a section that covers the Weierstrass M-Test and Dirichlet's Test. I am not sure where to begin with this. Analysis really isn't my thing at this point.
real-analysis sequences-and-series analysis uniform-convergence pointwise-convergence
$endgroup$
$begingroup$
Are you trying to prove those statements about $f$, or something else?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:45
$begingroup$
Yes, sorry I left that off
$endgroup$
– MFD55012
Nov 4 '13 at 18:50
$begingroup$
Have you tried using those tests in any fashion?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:54
$begingroup$
Note that $|sin t|leq |t|$ for every real number $t$.
$endgroup$
– Julien
Nov 4 '13 at 18:57
$begingroup$
I am trying to use Dirichlet's now.
$endgroup$
– MFD55012
Nov 4 '13 at 19:05
|
show 1 more comment
$begingroup$
Show that
$$f(x) = sum_{k=1}^{infty} dfrac{1}{k} sin left(dfrac{x}{k+1}right).$$
converges pointwise on $mathbb{R}$ and uniformly on each bounded interval in $mathbb{R}$, to a differentiable function $f$ which satisifies $vert f(x) vert leq vert x vert$ and $vert f'(x) vert leq 1$.
This problem comes from a section that covers the Weierstrass M-Test and Dirichlet's Test. I am not sure where to begin with this. Analysis really isn't my thing at this point.
real-analysis sequences-and-series analysis uniform-convergence pointwise-convergence
$endgroup$
Show that
$$f(x) = sum_{k=1}^{infty} dfrac{1}{k} sin left(dfrac{x}{k+1}right).$$
converges pointwise on $mathbb{R}$ and uniformly on each bounded interval in $mathbb{R}$, to a differentiable function $f$ which satisifies $vert f(x) vert leq vert x vert$ and $vert f'(x) vert leq 1$.
This problem comes from a section that covers the Weierstrass M-Test and Dirichlet's Test. I am not sure where to begin with this. Analysis really isn't my thing at this point.
real-analysis sequences-and-series analysis uniform-convergence pointwise-convergence
real-analysis sequences-and-series analysis uniform-convergence pointwise-convergence
edited Dec 30 '18 at 21:11
Did
247k23222457
247k23222457
asked Nov 4 '13 at 18:37
MFD55012MFD55012
604
604
$begingroup$
Are you trying to prove those statements about $f$, or something else?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:45
$begingroup$
Yes, sorry I left that off
$endgroup$
– MFD55012
Nov 4 '13 at 18:50
$begingroup$
Have you tried using those tests in any fashion?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:54
$begingroup$
Note that $|sin t|leq |t|$ for every real number $t$.
$endgroup$
– Julien
Nov 4 '13 at 18:57
$begingroup$
I am trying to use Dirichlet's now.
$endgroup$
– MFD55012
Nov 4 '13 at 19:05
|
show 1 more comment
$begingroup$
Are you trying to prove those statements about $f$, or something else?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:45
$begingroup$
Yes, sorry I left that off
$endgroup$
– MFD55012
Nov 4 '13 at 18:50
$begingroup$
Have you tried using those tests in any fashion?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:54
$begingroup$
Note that $|sin t|leq |t|$ for every real number $t$.
$endgroup$
– Julien
Nov 4 '13 at 18:57
$begingroup$
I am trying to use Dirichlet's now.
$endgroup$
– MFD55012
Nov 4 '13 at 19:05
$begingroup$
Are you trying to prove those statements about $f$, or something else?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:45
$begingroup$
Are you trying to prove those statements about $f$, or something else?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:45
$begingroup$
Yes, sorry I left that off
$endgroup$
– MFD55012
Nov 4 '13 at 18:50
$begingroup$
Yes, sorry I left that off
$endgroup$
– MFD55012
Nov 4 '13 at 18:50
$begingroup$
Have you tried using those tests in any fashion?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:54
$begingroup$
Have you tried using those tests in any fashion?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:54
$begingroup$
Note that $|sin t|leq |t|$ for every real number $t$.
$endgroup$
– Julien
Nov 4 '13 at 18:57
$begingroup$
Note that $|sin t|leq |t|$ for every real number $t$.
$endgroup$
– Julien
Nov 4 '13 at 18:57
$begingroup$
I am trying to use Dirichlet's now.
$endgroup$
– MFD55012
Nov 4 '13 at 19:05
$begingroup$
I am trying to use Dirichlet's now.
$endgroup$
– MFD55012
Nov 4 '13 at 19:05
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
I'm sorry you're just getting your answer in five years. Lets have a look at this;
Let $[a,b]subseteq Bbb{R}$ be any bounded interval, $xin [a,b]$ and $kin Bbb{N},$ then
begin{align} left|dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|leq dfrac{1}{k}left|dfrac{x}{k+1}right|=dfrac{left|xright|}{k(k+1)} leq dfrac{left|xright|}{k(k+1)} leq dfrac{c}{k(k+1)} , end{align}
where $c:=max{|a|,|b|}quad$ [see If $xin[a,b],$ then $|x|leq max{|a|,|b|}$. Since
begin{align} sum^{infty}_{k=1}dfrac{c}{k(k+1)} , end{align}
converges, then,
begin{align} sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right) end{align}
converges uniformly on $[a,b],$ by Weierstrass-M test. Since $[a,b]subseteq Bbb{R}$ was arbitrary, then uniform convergence is true on each bounded interval in $Bbb{R}$ which also implies pointwise convergence on $Bbb{R}$. Now, for arbitrary $xinBbb{R},$
begin{align} left|f(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|\&leq sum^{infty}_{k=1} dfrac{1}{k}left|dfrac{x}{k+1}right|\&= sum^{infty}_{k=1}dfrac{left|xright|}{k(k+1)}\&= left|xright|sum^{infty}_{k=1}dfrac{1}{k(k+1)}\&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= left|xright|limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= left|xright|. end{align}
Since the series converges uniformly on $[a,b],$ then we can differentiate term-term on $[a,b].$ Thus, for $xin [a,b]$
begin{align} f'(x)&=dfrac{d}{dx}sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)\&=sum^{infty}_{k=1}dfrac{1}{k}dfrac{d}{dx}left[sinleft(dfrac{x}{k+1}right)right]\&=sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right) , end{align}
which implies that
begin{align} left|f'(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right)right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)left|cosleft(dfrac{x}{k+1}right) right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= 1 end{align}
as required.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f551875%2fon-the-modes-of-convergence-of-the-series-sum-limits-k-1-infty-frac1k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I'm sorry you're just getting your answer in five years. Lets have a look at this;
Let $[a,b]subseteq Bbb{R}$ be any bounded interval, $xin [a,b]$ and $kin Bbb{N},$ then
begin{align} left|dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|leq dfrac{1}{k}left|dfrac{x}{k+1}right|=dfrac{left|xright|}{k(k+1)} leq dfrac{left|xright|}{k(k+1)} leq dfrac{c}{k(k+1)} , end{align}
where $c:=max{|a|,|b|}quad$ [see If $xin[a,b],$ then $|x|leq max{|a|,|b|}$. Since
begin{align} sum^{infty}_{k=1}dfrac{c}{k(k+1)} , end{align}
converges, then,
begin{align} sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right) end{align}
converges uniformly on $[a,b],$ by Weierstrass-M test. Since $[a,b]subseteq Bbb{R}$ was arbitrary, then uniform convergence is true on each bounded interval in $Bbb{R}$ which also implies pointwise convergence on $Bbb{R}$. Now, for arbitrary $xinBbb{R},$
begin{align} left|f(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|\&leq sum^{infty}_{k=1} dfrac{1}{k}left|dfrac{x}{k+1}right|\&= sum^{infty}_{k=1}dfrac{left|xright|}{k(k+1)}\&= left|xright|sum^{infty}_{k=1}dfrac{1}{k(k+1)}\&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= left|xright|limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= left|xright|. end{align}
Since the series converges uniformly on $[a,b],$ then we can differentiate term-term on $[a,b].$ Thus, for $xin [a,b]$
begin{align} f'(x)&=dfrac{d}{dx}sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)\&=sum^{infty}_{k=1}dfrac{1}{k}dfrac{d}{dx}left[sinleft(dfrac{x}{k+1}right)right]\&=sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right) , end{align}
which implies that
begin{align} left|f'(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right)right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)left|cosleft(dfrac{x}{k+1}right) right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= 1 end{align}
as required.
$endgroup$
add a comment |
$begingroup$
I'm sorry you're just getting your answer in five years. Lets have a look at this;
Let $[a,b]subseteq Bbb{R}$ be any bounded interval, $xin [a,b]$ and $kin Bbb{N},$ then
begin{align} left|dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|leq dfrac{1}{k}left|dfrac{x}{k+1}right|=dfrac{left|xright|}{k(k+1)} leq dfrac{left|xright|}{k(k+1)} leq dfrac{c}{k(k+1)} , end{align}
where $c:=max{|a|,|b|}quad$ [see If $xin[a,b],$ then $|x|leq max{|a|,|b|}$. Since
begin{align} sum^{infty}_{k=1}dfrac{c}{k(k+1)} , end{align}
converges, then,
begin{align} sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right) end{align}
converges uniformly on $[a,b],$ by Weierstrass-M test. Since $[a,b]subseteq Bbb{R}$ was arbitrary, then uniform convergence is true on each bounded interval in $Bbb{R}$ which also implies pointwise convergence on $Bbb{R}$. Now, for arbitrary $xinBbb{R},$
begin{align} left|f(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|\&leq sum^{infty}_{k=1} dfrac{1}{k}left|dfrac{x}{k+1}right|\&= sum^{infty}_{k=1}dfrac{left|xright|}{k(k+1)}\&= left|xright|sum^{infty}_{k=1}dfrac{1}{k(k+1)}\&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= left|xright|limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= left|xright|. end{align}
Since the series converges uniformly on $[a,b],$ then we can differentiate term-term on $[a,b].$ Thus, for $xin [a,b]$
begin{align} f'(x)&=dfrac{d}{dx}sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)\&=sum^{infty}_{k=1}dfrac{1}{k}dfrac{d}{dx}left[sinleft(dfrac{x}{k+1}right)right]\&=sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right) , end{align}
which implies that
begin{align} left|f'(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right)right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)left|cosleft(dfrac{x}{k+1}right) right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= 1 end{align}
as required.
$endgroup$
add a comment |
$begingroup$
I'm sorry you're just getting your answer in five years. Lets have a look at this;
Let $[a,b]subseteq Bbb{R}$ be any bounded interval, $xin [a,b]$ and $kin Bbb{N},$ then
begin{align} left|dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|leq dfrac{1}{k}left|dfrac{x}{k+1}right|=dfrac{left|xright|}{k(k+1)} leq dfrac{left|xright|}{k(k+1)} leq dfrac{c}{k(k+1)} , end{align}
where $c:=max{|a|,|b|}quad$ [see If $xin[a,b],$ then $|x|leq max{|a|,|b|}$. Since
begin{align} sum^{infty}_{k=1}dfrac{c}{k(k+1)} , end{align}
converges, then,
begin{align} sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right) end{align}
converges uniformly on $[a,b],$ by Weierstrass-M test. Since $[a,b]subseteq Bbb{R}$ was arbitrary, then uniform convergence is true on each bounded interval in $Bbb{R}$ which also implies pointwise convergence on $Bbb{R}$. Now, for arbitrary $xinBbb{R},$
begin{align} left|f(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|\&leq sum^{infty}_{k=1} dfrac{1}{k}left|dfrac{x}{k+1}right|\&= sum^{infty}_{k=1}dfrac{left|xright|}{k(k+1)}\&= left|xright|sum^{infty}_{k=1}dfrac{1}{k(k+1)}\&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= left|xright|limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= left|xright|. end{align}
Since the series converges uniformly on $[a,b],$ then we can differentiate term-term on $[a,b].$ Thus, for $xin [a,b]$
begin{align} f'(x)&=dfrac{d}{dx}sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)\&=sum^{infty}_{k=1}dfrac{1}{k}dfrac{d}{dx}left[sinleft(dfrac{x}{k+1}right)right]\&=sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right) , end{align}
which implies that
begin{align} left|f'(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right)right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)left|cosleft(dfrac{x}{k+1}right) right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= 1 end{align}
as required.
$endgroup$
I'm sorry you're just getting your answer in five years. Lets have a look at this;
Let $[a,b]subseteq Bbb{R}$ be any bounded interval, $xin [a,b]$ and $kin Bbb{N},$ then
begin{align} left|dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|leq dfrac{1}{k}left|dfrac{x}{k+1}right|=dfrac{left|xright|}{k(k+1)} leq dfrac{left|xright|}{k(k+1)} leq dfrac{c}{k(k+1)} , end{align}
where $c:=max{|a|,|b|}quad$ [see If $xin[a,b],$ then $|x|leq max{|a|,|b|}$. Since
begin{align} sum^{infty}_{k=1}dfrac{c}{k(k+1)} , end{align}
converges, then,
begin{align} sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right) end{align}
converges uniformly on $[a,b],$ by Weierstrass-M test. Since $[a,b]subseteq Bbb{R}$ was arbitrary, then uniform convergence is true on each bounded interval in $Bbb{R}$ which also implies pointwise convergence on $Bbb{R}$. Now, for arbitrary $xinBbb{R},$
begin{align} left|f(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)right|\&leq sum^{infty}_{k=1} dfrac{1}{k}left|dfrac{x}{k+1}right|\&= sum^{infty}_{k=1}dfrac{left|xright|}{k(k+1)}\&= left|xright|sum^{infty}_{k=1}dfrac{1}{k(k+1)}\&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= left|xright|limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= left|xright|limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= left|xright|. end{align}
Since the series converges uniformly on $[a,b],$ then we can differentiate term-term on $[a,b].$ Thus, for $xin [a,b]$
begin{align} f'(x)&=dfrac{d}{dx}sum^{infty}_{k=1}dfrac{1}{k}sinleft(dfrac{x}{k+1}right)\&=sum^{infty}_{k=1}dfrac{1}{k}dfrac{d}{dx}left[sinleft(dfrac{x}{k+1}right)right]\&=sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right) , end{align}
which implies that
begin{align} left|f'(x)right|&=left|sum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)cosleft(dfrac{x}{k+1}right)right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)left|cosleft(dfrac{x}{k+1}right) right|\&leqsum^{infty}_{k=1}dfrac{1}{k}left(dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}sum^{n}_{k=1}dfrac{1}{k(k+1)} \&= limlimits_{ntoinfty}sum^{n}_{k=1}left(dfrac{1}{k}-dfrac{1}{k+1}right)\&= limlimits_{ntoinfty}left(1-dfrac{1}{n+1}right) \&= 1 end{align}
as required.
edited Dec 30 '18 at 21:50
answered Dec 30 '18 at 20:54
Omojola MichealOmojola Micheal
1,802324
1,802324
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f551875%2fon-the-modes-of-convergence-of-the-series-sum-limits-k-1-infty-frac1k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Are you trying to prove those statements about $f$, or something else?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:45
$begingroup$
Yes, sorry I left that off
$endgroup$
– MFD55012
Nov 4 '13 at 18:50
$begingroup$
Have you tried using those tests in any fashion?
$endgroup$
– zibadawa timmy
Nov 4 '13 at 18:54
$begingroup$
Note that $|sin t|leq |t|$ for every real number $t$.
$endgroup$
– Julien
Nov 4 '13 at 18:57
$begingroup$
I am trying to use Dirichlet's now.
$endgroup$
– MFD55012
Nov 4 '13 at 19:05