If $(X_t)_{tge0}$ is a Markov process with invariant measure $mu$, does the distribution of $X_t$ weakly...












1














Let





  • $(Omega,mathcal A,operatorname P)$ be a complete probability space


  • $(X_t)_{tge0}$ be a time-homogeneous Markov process on $(Omega,mathcal A,operatorname P)$ and $kappa_t$ denote a regular version of the conditional distribution of $X_t$ given $X_0$ for $tge0$, i.e. $$kappa_t(x,B)=operatorname Pleft[X_tin Bmid X_0=xright];;;text{for all }(x,B)inmathbb Rtimesmathcal B(mathbb R)tag1$$


  • $C_0(mathbb R)$ denote the space of continuous functions on $mathbb R$ vanishing at infinity


  • $mu$ be a probability measure on $(mathbb R,mathcal B(mathbb R))$


As usual, let $$kappa_tf:=intkappa_t(x,{rm d}y)f(y)$$ for bounded Borel measurable $f:mathbb Rtomathbb R$ and $tge0$.
Assume $$kappa_tC_0(mathbb R)subseteq C_0(mathbb R);;;text{for all }tge0.tag2$$



Let $$mu_t(B):=operatorname Pleft[X_tin Bright];;;text{for }Binmathcal B(mathbb R)$$ for $tge0$. It's easy to see that weak convergence of $mu_t$ to $mu$ as $ttoinfty$ implies that $mu$ is invariant with respect to $(kappa_t)_{tge0}$, i.e. $$mukappa_t=mu;;;text{for all }tge0,$$ where $mukappa_t$ denotes the composition of $mu$ and $kappa_t$.




Does the converse hold as well, i.e. if $mu$ is invariant with respect to $(kappa_t)_{tge0}$, are we able to conclude that $mu_t$ converges weakly to $mu$ as $ttoinfty$?











share|cite|improve this question






















  • What is the relation between $mu_t$, $kappa_t$ and $mu$? Is it something like $$mu_t (B) = int kappa_t(x,B) mu(, d x) = P^{mu}(X_t in B) ?$$ Because otherwise $mu_t to mu$ weakly will not imply $mu kappa_t = mu$.
    – Sayantan
    Dec 28 '18 at 1:43












  • @Sayantan We've got $mu_t=mu_0otimes kappa_t$ (product of $mu_0$ and $kappa_t$).
    – 0xbadf00d
    Dec 28 '18 at 10:35
















1














Let





  • $(Omega,mathcal A,operatorname P)$ be a complete probability space


  • $(X_t)_{tge0}$ be a time-homogeneous Markov process on $(Omega,mathcal A,operatorname P)$ and $kappa_t$ denote a regular version of the conditional distribution of $X_t$ given $X_0$ for $tge0$, i.e. $$kappa_t(x,B)=operatorname Pleft[X_tin Bmid X_0=xright];;;text{for all }(x,B)inmathbb Rtimesmathcal B(mathbb R)tag1$$


  • $C_0(mathbb R)$ denote the space of continuous functions on $mathbb R$ vanishing at infinity


  • $mu$ be a probability measure on $(mathbb R,mathcal B(mathbb R))$


As usual, let $$kappa_tf:=intkappa_t(x,{rm d}y)f(y)$$ for bounded Borel measurable $f:mathbb Rtomathbb R$ and $tge0$.
Assume $$kappa_tC_0(mathbb R)subseteq C_0(mathbb R);;;text{for all }tge0.tag2$$



Let $$mu_t(B):=operatorname Pleft[X_tin Bright];;;text{for }Binmathcal B(mathbb R)$$ for $tge0$. It's easy to see that weak convergence of $mu_t$ to $mu$ as $ttoinfty$ implies that $mu$ is invariant with respect to $(kappa_t)_{tge0}$, i.e. $$mukappa_t=mu;;;text{for all }tge0,$$ where $mukappa_t$ denotes the composition of $mu$ and $kappa_t$.




Does the converse hold as well, i.e. if $mu$ is invariant with respect to $(kappa_t)_{tge0}$, are we able to conclude that $mu_t$ converges weakly to $mu$ as $ttoinfty$?











share|cite|improve this question






















  • What is the relation between $mu_t$, $kappa_t$ and $mu$? Is it something like $$mu_t (B) = int kappa_t(x,B) mu(, d x) = P^{mu}(X_t in B) ?$$ Because otherwise $mu_t to mu$ weakly will not imply $mu kappa_t = mu$.
    – Sayantan
    Dec 28 '18 at 1:43












  • @Sayantan We've got $mu_t=mu_0otimes kappa_t$ (product of $mu_0$ and $kappa_t$).
    – 0xbadf00d
    Dec 28 '18 at 10:35














1












1








1







Let





  • $(Omega,mathcal A,operatorname P)$ be a complete probability space


  • $(X_t)_{tge0}$ be a time-homogeneous Markov process on $(Omega,mathcal A,operatorname P)$ and $kappa_t$ denote a regular version of the conditional distribution of $X_t$ given $X_0$ for $tge0$, i.e. $$kappa_t(x,B)=operatorname Pleft[X_tin Bmid X_0=xright];;;text{for all }(x,B)inmathbb Rtimesmathcal B(mathbb R)tag1$$


  • $C_0(mathbb R)$ denote the space of continuous functions on $mathbb R$ vanishing at infinity


  • $mu$ be a probability measure on $(mathbb R,mathcal B(mathbb R))$


As usual, let $$kappa_tf:=intkappa_t(x,{rm d}y)f(y)$$ for bounded Borel measurable $f:mathbb Rtomathbb R$ and $tge0$.
Assume $$kappa_tC_0(mathbb R)subseteq C_0(mathbb R);;;text{for all }tge0.tag2$$



Let $$mu_t(B):=operatorname Pleft[X_tin Bright];;;text{for }Binmathcal B(mathbb R)$$ for $tge0$. It's easy to see that weak convergence of $mu_t$ to $mu$ as $ttoinfty$ implies that $mu$ is invariant with respect to $(kappa_t)_{tge0}$, i.e. $$mukappa_t=mu;;;text{for all }tge0,$$ where $mukappa_t$ denotes the composition of $mu$ and $kappa_t$.




Does the converse hold as well, i.e. if $mu$ is invariant with respect to $(kappa_t)_{tge0}$, are we able to conclude that $mu_t$ converges weakly to $mu$ as $ttoinfty$?











share|cite|improve this question













Let





  • $(Omega,mathcal A,operatorname P)$ be a complete probability space


  • $(X_t)_{tge0}$ be a time-homogeneous Markov process on $(Omega,mathcal A,operatorname P)$ and $kappa_t$ denote a regular version of the conditional distribution of $X_t$ given $X_0$ for $tge0$, i.e. $$kappa_t(x,B)=operatorname Pleft[X_tin Bmid X_0=xright];;;text{for all }(x,B)inmathbb Rtimesmathcal B(mathbb R)tag1$$


  • $C_0(mathbb R)$ denote the space of continuous functions on $mathbb R$ vanishing at infinity


  • $mu$ be a probability measure on $(mathbb R,mathcal B(mathbb R))$


As usual, let $$kappa_tf:=intkappa_t(x,{rm d}y)f(y)$$ for bounded Borel measurable $f:mathbb Rtomathbb R$ and $tge0$.
Assume $$kappa_tC_0(mathbb R)subseteq C_0(mathbb R);;;text{for all }tge0.tag2$$



Let $$mu_t(B):=operatorname Pleft[X_tin Bright];;;text{for }Binmathcal B(mathbb R)$$ for $tge0$. It's easy to see that weak convergence of $mu_t$ to $mu$ as $ttoinfty$ implies that $mu$ is invariant with respect to $(kappa_t)_{tge0}$, i.e. $$mukappa_t=mu;;;text{for all }tge0,$$ where $mukappa_t$ denotes the composition of $mu$ and $kappa_t$.




Does the converse hold as well, i.e. if $mu$ is invariant with respect to $(kappa_t)_{tge0}$, are we able to conclude that $mu_t$ converges weakly to $mu$ as $ttoinfty$?








probability-theory measure-theory stochastic-processes markov-process stochastic-analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 28 '18 at 0:45









0xbadf00d

1,75441430




1,75441430












  • What is the relation between $mu_t$, $kappa_t$ and $mu$? Is it something like $$mu_t (B) = int kappa_t(x,B) mu(, d x) = P^{mu}(X_t in B) ?$$ Because otherwise $mu_t to mu$ weakly will not imply $mu kappa_t = mu$.
    – Sayantan
    Dec 28 '18 at 1:43












  • @Sayantan We've got $mu_t=mu_0otimes kappa_t$ (product of $mu_0$ and $kappa_t$).
    – 0xbadf00d
    Dec 28 '18 at 10:35


















  • What is the relation between $mu_t$, $kappa_t$ and $mu$? Is it something like $$mu_t (B) = int kappa_t(x,B) mu(, d x) = P^{mu}(X_t in B) ?$$ Because otherwise $mu_t to mu$ weakly will not imply $mu kappa_t = mu$.
    – Sayantan
    Dec 28 '18 at 1:43












  • @Sayantan We've got $mu_t=mu_0otimes kappa_t$ (product of $mu_0$ and $kappa_t$).
    – 0xbadf00d
    Dec 28 '18 at 10:35
















What is the relation between $mu_t$, $kappa_t$ and $mu$? Is it something like $$mu_t (B) = int kappa_t(x,B) mu(, d x) = P^{mu}(X_t in B) ?$$ Because otherwise $mu_t to mu$ weakly will not imply $mu kappa_t = mu$.
– Sayantan
Dec 28 '18 at 1:43






What is the relation between $mu_t$, $kappa_t$ and $mu$? Is it something like $$mu_t (B) = int kappa_t(x,B) mu(, d x) = P^{mu}(X_t in B) ?$$ Because otherwise $mu_t to mu$ weakly will not imply $mu kappa_t = mu$.
– Sayantan
Dec 28 '18 at 1:43














@Sayantan We've got $mu_t=mu_0otimes kappa_t$ (product of $mu_0$ and $kappa_t$).
– 0xbadf00d
Dec 28 '18 at 10:35




@Sayantan We've got $mu_t=mu_0otimes kappa_t$ (product of $mu_0$ and $kappa_t$).
– 0xbadf00d
Dec 28 '18 at 10:35










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054481%2fif-x-t-t-ge0-is-a-markov-process-with-invariant-measure-mu-does-the-di%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054481%2fif-x-t-t-ge0-is-a-markov-process-with-invariant-measure-mu-does-the-di%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅