Find all integers $x,y$ whose squares sum up to $c$ mod 5
$begingroup$
Find all integers $x,y$ such that $x^2 + y^2 equiv c pmod{5}$.
I managed to solve by trying one-by-one, but I guess there is some other way to solve this?
modular-arithmetic
$endgroup$
add a comment |
$begingroup$
Find all integers $x,y$ such that $x^2 + y^2 equiv c pmod{5}$.
I managed to solve by trying one-by-one, but I guess there is some other way to solve this?
modular-arithmetic
$endgroup$
1
$begingroup$
Please rewrite the equation in the post itself. What do you want it to be equivalent to in mod 5 ? And I think you can just consider what values $n^2$ gets in general in mod 5.
$endgroup$
– Matti P.
Jan 18 at 8:53
add a comment |
$begingroup$
Find all integers $x,y$ such that $x^2 + y^2 equiv c pmod{5}$.
I managed to solve by trying one-by-one, but I guess there is some other way to solve this?
modular-arithmetic
$endgroup$
Find all integers $x,y$ such that $x^2 + y^2 equiv c pmod{5}$.
I managed to solve by trying one-by-one, but I guess there is some other way to solve this?
modular-arithmetic
modular-arithmetic
edited Jan 18 at 9:09
Yuval Filmus
49k472148
49k472148
asked Jan 18 at 8:52
Katrine NicolaisenKatrine Nicolaisen
1
1
1
$begingroup$
Please rewrite the equation in the post itself. What do you want it to be equivalent to in mod 5 ? And I think you can just consider what values $n^2$ gets in general in mod 5.
$endgroup$
– Matti P.
Jan 18 at 8:53
add a comment |
1
$begingroup$
Please rewrite the equation in the post itself. What do you want it to be equivalent to in mod 5 ? And I think you can just consider what values $n^2$ gets in general in mod 5.
$endgroup$
– Matti P.
Jan 18 at 8:53
1
1
$begingroup$
Please rewrite the equation in the post itself. What do you want it to be equivalent to in mod 5 ? And I think you can just consider what values $n^2$ gets in general in mod 5.
$endgroup$
– Matti P.
Jan 18 at 8:53
$begingroup$
Please rewrite the equation in the post itself. What do you want it to be equivalent to in mod 5 ? And I think you can just consider what values $n^2$ gets in general in mod 5.
$endgroup$
– Matti P.
Jan 18 at 8:53
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Now we have that all the squares the integers numbers with last digit $1,4,6,9$ will have last digit $ equiv 1 mod 5$. Same argument if the last digit is $2,3,7,8$ is $ equiv 4 mod 5$. And we have $ equiv 0 mod 5$ if the last digit is $0,5$.
Thus if
$c=0$ then $x=5k$, $y=5j$ for $k,j in mathbb{Z}$
$ x=5k+1$ or $x=5k+4$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=1$ then $x=5k$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=2$ then $x=5k+1$ or $x=5k+4$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=3$ then $x=5k+2$ or $x=5k+3$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=4$ then $x=5k$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
Since this expression in symmetric in $x$ and $y$ you can also swap $x$ and $y$
$endgroup$
$begingroup$
Thank you very mouch:-)
$endgroup$
– Katrine Nicolaisen
Jan 21 at 22:49
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077991%2ffind-all-integers-x-y-whose-squares-sum-up-to-c-mod-5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Now we have that all the squares the integers numbers with last digit $1,4,6,9$ will have last digit $ equiv 1 mod 5$. Same argument if the last digit is $2,3,7,8$ is $ equiv 4 mod 5$. And we have $ equiv 0 mod 5$ if the last digit is $0,5$.
Thus if
$c=0$ then $x=5k$, $y=5j$ for $k,j in mathbb{Z}$
$ x=5k+1$ or $x=5k+4$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=1$ then $x=5k$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=2$ then $x=5k+1$ or $x=5k+4$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=3$ then $x=5k+2$ or $x=5k+3$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=4$ then $x=5k$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
Since this expression in symmetric in $x$ and $y$ you can also swap $x$ and $y$
$endgroup$
$begingroup$
Thank you very mouch:-)
$endgroup$
– Katrine Nicolaisen
Jan 21 at 22:49
add a comment |
$begingroup$
Now we have that all the squares the integers numbers with last digit $1,4,6,9$ will have last digit $ equiv 1 mod 5$. Same argument if the last digit is $2,3,7,8$ is $ equiv 4 mod 5$. And we have $ equiv 0 mod 5$ if the last digit is $0,5$.
Thus if
$c=0$ then $x=5k$, $y=5j$ for $k,j in mathbb{Z}$
$ x=5k+1$ or $x=5k+4$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=1$ then $x=5k$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=2$ then $x=5k+1$ or $x=5k+4$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=3$ then $x=5k+2$ or $x=5k+3$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=4$ then $x=5k$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
Since this expression in symmetric in $x$ and $y$ you can also swap $x$ and $y$
$endgroup$
$begingroup$
Thank you very mouch:-)
$endgroup$
– Katrine Nicolaisen
Jan 21 at 22:49
add a comment |
$begingroup$
Now we have that all the squares the integers numbers with last digit $1,4,6,9$ will have last digit $ equiv 1 mod 5$. Same argument if the last digit is $2,3,7,8$ is $ equiv 4 mod 5$. And we have $ equiv 0 mod 5$ if the last digit is $0,5$.
Thus if
$c=0$ then $x=5k$, $y=5j$ for $k,j in mathbb{Z}$
$ x=5k+1$ or $x=5k+4$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=1$ then $x=5k$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=2$ then $x=5k+1$ or $x=5k+4$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=3$ then $x=5k+2$ or $x=5k+3$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=4$ then $x=5k$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
Since this expression in symmetric in $x$ and $y$ you can also swap $x$ and $y$
$endgroup$
Now we have that all the squares the integers numbers with last digit $1,4,6,9$ will have last digit $ equiv 1 mod 5$. Same argument if the last digit is $2,3,7,8$ is $ equiv 4 mod 5$. And we have $ equiv 0 mod 5$ if the last digit is $0,5$.
Thus if
$c=0$ then $x=5k$, $y=5j$ for $k,j in mathbb{Z}$
$ x=5k+1$ or $x=5k+4$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=1$ then $x=5k$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=2$ then $x=5k+1$ or $x=5k+4$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=3$ then $x=5k+2$ or $x=5k+3$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=4$ then $x=5k$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
Since this expression in symmetric in $x$ and $y$ you can also swap $x$ and $y$
answered Jan 18 at 9:20
user289143user289143
1,069313
1,069313
$begingroup$
Thank you very mouch:-)
$endgroup$
– Katrine Nicolaisen
Jan 21 at 22:49
add a comment |
$begingroup$
Thank you very mouch:-)
$endgroup$
– Katrine Nicolaisen
Jan 21 at 22:49
$begingroup$
Thank you very mouch:-)
$endgroup$
– Katrine Nicolaisen
Jan 21 at 22:49
$begingroup$
Thank you very mouch:-)
$endgroup$
– Katrine Nicolaisen
Jan 21 at 22:49
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077991%2ffind-all-integers-x-y-whose-squares-sum-up-to-c-mod-5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Please rewrite the equation in the post itself. What do you want it to be equivalent to in mod 5 ? And I think you can just consider what values $n^2$ gets in general in mod 5.
$endgroup$
– Matti P.
Jan 18 at 8:53