Find all integers $x,y$ whose squares sum up to $c$ mod 5












0












$begingroup$



Find all integers $x,y$ such that $x^2 + y^2 equiv c pmod{5}$.




I managed to solve by trying one-by-one, but I guess there is some other way to solve this?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Please rewrite the equation in the post itself. What do you want it to be equivalent to in mod 5 ? And I think you can just consider what values $n^2$ gets in general in mod 5.
    $endgroup$
    – Matti P.
    Jan 18 at 8:53
















0












$begingroup$



Find all integers $x,y$ such that $x^2 + y^2 equiv c pmod{5}$.




I managed to solve by trying one-by-one, but I guess there is some other way to solve this?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Please rewrite the equation in the post itself. What do you want it to be equivalent to in mod 5 ? And I think you can just consider what values $n^2$ gets in general in mod 5.
    $endgroup$
    – Matti P.
    Jan 18 at 8:53














0












0








0





$begingroup$



Find all integers $x,y$ such that $x^2 + y^2 equiv c pmod{5}$.




I managed to solve by trying one-by-one, but I guess there is some other way to solve this?










share|cite|improve this question











$endgroup$





Find all integers $x,y$ such that $x^2 + y^2 equiv c pmod{5}$.




I managed to solve by trying one-by-one, but I guess there is some other way to solve this?







modular-arithmetic






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 18 at 9:09









Yuval Filmus

49k472148




49k472148










asked Jan 18 at 8:52









Katrine NicolaisenKatrine Nicolaisen

1




1








  • 1




    $begingroup$
    Please rewrite the equation in the post itself. What do you want it to be equivalent to in mod 5 ? And I think you can just consider what values $n^2$ gets in general in mod 5.
    $endgroup$
    – Matti P.
    Jan 18 at 8:53














  • 1




    $begingroup$
    Please rewrite the equation in the post itself. What do you want it to be equivalent to in mod 5 ? And I think you can just consider what values $n^2$ gets in general in mod 5.
    $endgroup$
    – Matti P.
    Jan 18 at 8:53








1




1




$begingroup$
Please rewrite the equation in the post itself. What do you want it to be equivalent to in mod 5 ? And I think you can just consider what values $n^2$ gets in general in mod 5.
$endgroup$
– Matti P.
Jan 18 at 8:53




$begingroup$
Please rewrite the equation in the post itself. What do you want it to be equivalent to in mod 5 ? And I think you can just consider what values $n^2$ gets in general in mod 5.
$endgroup$
– Matti P.
Jan 18 at 8:53










1 Answer
1






active

oldest

votes


















0












$begingroup$

Now we have that all the squares the integers numbers with last digit $1,4,6,9$ will have last digit $ equiv 1 mod 5$. Same argument if the last digit is $2,3,7,8$ is $ equiv 4 mod 5$. And we have $ equiv 0 mod 5$ if the last digit is $0,5$.

Thus if
$c=0$ then $x=5k$, $y=5j$ for $k,j in mathbb{Z}$
$ x=5k+1$ or $x=5k+4$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=1$ then $x=5k$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=2$ then $x=5k+1$ or $x=5k+4$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=3$ then $x=5k+2$ or $x=5k+3$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=4$ then $x=5k$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$



Since this expression in symmetric in $x$ and $y$ you can also swap $x$ and $y$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you very mouch:-)
    $endgroup$
    – Katrine Nicolaisen
    Jan 21 at 22:49












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077991%2ffind-all-integers-x-y-whose-squares-sum-up-to-c-mod-5%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Now we have that all the squares the integers numbers with last digit $1,4,6,9$ will have last digit $ equiv 1 mod 5$. Same argument if the last digit is $2,3,7,8$ is $ equiv 4 mod 5$. And we have $ equiv 0 mod 5$ if the last digit is $0,5$.

Thus if
$c=0$ then $x=5k$, $y=5j$ for $k,j in mathbb{Z}$
$ x=5k+1$ or $x=5k+4$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=1$ then $x=5k$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=2$ then $x=5k+1$ or $x=5k+4$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=3$ then $x=5k+2$ or $x=5k+3$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=4$ then $x=5k$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$



Since this expression in symmetric in $x$ and $y$ you can also swap $x$ and $y$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you very mouch:-)
    $endgroup$
    – Katrine Nicolaisen
    Jan 21 at 22:49
















0












$begingroup$

Now we have that all the squares the integers numbers with last digit $1,4,6,9$ will have last digit $ equiv 1 mod 5$. Same argument if the last digit is $2,3,7,8$ is $ equiv 4 mod 5$. And we have $ equiv 0 mod 5$ if the last digit is $0,5$.

Thus if
$c=0$ then $x=5k$, $y=5j$ for $k,j in mathbb{Z}$
$ x=5k+1$ or $x=5k+4$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=1$ then $x=5k$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=2$ then $x=5k+1$ or $x=5k+4$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=3$ then $x=5k+2$ or $x=5k+3$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=4$ then $x=5k$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$



Since this expression in symmetric in $x$ and $y$ you can also swap $x$ and $y$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you very mouch:-)
    $endgroup$
    – Katrine Nicolaisen
    Jan 21 at 22:49














0












0








0





$begingroup$

Now we have that all the squares the integers numbers with last digit $1,4,6,9$ will have last digit $ equiv 1 mod 5$. Same argument if the last digit is $2,3,7,8$ is $ equiv 4 mod 5$. And we have $ equiv 0 mod 5$ if the last digit is $0,5$.

Thus if
$c=0$ then $x=5k$, $y=5j$ for $k,j in mathbb{Z}$
$ x=5k+1$ or $x=5k+4$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=1$ then $x=5k$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=2$ then $x=5k+1$ or $x=5k+4$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=3$ then $x=5k+2$ or $x=5k+3$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=4$ then $x=5k$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$



Since this expression in symmetric in $x$ and $y$ you can also swap $x$ and $y$






share|cite|improve this answer









$endgroup$



Now we have that all the squares the integers numbers with last digit $1,4,6,9$ will have last digit $ equiv 1 mod 5$. Same argument if the last digit is $2,3,7,8$ is $ equiv 4 mod 5$. And we have $ equiv 0 mod 5$ if the last digit is $0,5$.

Thus if
$c=0$ then $x=5k$, $y=5j$ for $k,j in mathbb{Z}$
$ x=5k+1$ or $x=5k+4$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=1$ then $x=5k$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=2$ then $x=5k+1$ or $x=5k+4$, $y=5j+1$ or $y=5j+4$ for $k,j in mathbb{Z}$
$c=3$ then $x=5k+2$ or $x=5k+3$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$
$c=4$ then $x=5k$, $y=5j+2$ or $y=5j+3$ for $k,j in mathbb{Z}$



Since this expression in symmetric in $x$ and $y$ you can also swap $x$ and $y$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 18 at 9:20









user289143user289143

1,069313




1,069313












  • $begingroup$
    Thank you very mouch:-)
    $endgroup$
    – Katrine Nicolaisen
    Jan 21 at 22:49


















  • $begingroup$
    Thank you very mouch:-)
    $endgroup$
    – Katrine Nicolaisen
    Jan 21 at 22:49
















$begingroup$
Thank you very mouch:-)
$endgroup$
– Katrine Nicolaisen
Jan 21 at 22:49




$begingroup$
Thank you very mouch:-)
$endgroup$
– Katrine Nicolaisen
Jan 21 at 22:49


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077991%2ffind-all-integers-x-y-whose-squares-sum-up-to-c-mod-5%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅