Finding the incentre, circumcentre of a triangle.
$begingroup$
I am trying to discover another type of geometry. I want to transform a geometry problem to a coordinate geometry problem as a coordinate geometry problem that is easier than a pure geometry (Euclidean geometry) problem. A geometry problem needs deep thinking (I am telling about hard problems i.e. Olympiad level problems), but a coordinate geometry problem doesn't need deep thinking ,it just needs calculations. So, let us go to the original problem.
The vertices of a triangle $ABC$ are $(a_1,b_1),(a_2,b_2),(a_3,b_3)$. Find the following coordinates:
$1)$ Incentre
$2)$ Circumcentre
$3)$ Orthocentre
$4)$ Centre of the nine point circle
Please tell me with good explanation. Thank you.
geometry analytic-geometry
$endgroup$
add a comment |
$begingroup$
I am trying to discover another type of geometry. I want to transform a geometry problem to a coordinate geometry problem as a coordinate geometry problem that is easier than a pure geometry (Euclidean geometry) problem. A geometry problem needs deep thinking (I am telling about hard problems i.e. Olympiad level problems), but a coordinate geometry problem doesn't need deep thinking ,it just needs calculations. So, let us go to the original problem.
The vertices of a triangle $ABC$ are $(a_1,b_1),(a_2,b_2),(a_3,b_3)$. Find the following coordinates:
$1)$ Incentre
$2)$ Circumcentre
$3)$ Orthocentre
$4)$ Centre of the nine point circle
Please tell me with good explanation. Thank you.
geometry analytic-geometry
$endgroup$
add a comment |
$begingroup$
I am trying to discover another type of geometry. I want to transform a geometry problem to a coordinate geometry problem as a coordinate geometry problem that is easier than a pure geometry (Euclidean geometry) problem. A geometry problem needs deep thinking (I am telling about hard problems i.e. Olympiad level problems), but a coordinate geometry problem doesn't need deep thinking ,it just needs calculations. So, let us go to the original problem.
The vertices of a triangle $ABC$ are $(a_1,b_1),(a_2,b_2),(a_3,b_3)$. Find the following coordinates:
$1)$ Incentre
$2)$ Circumcentre
$3)$ Orthocentre
$4)$ Centre of the nine point circle
Please tell me with good explanation. Thank you.
geometry analytic-geometry
$endgroup$
I am trying to discover another type of geometry. I want to transform a geometry problem to a coordinate geometry problem as a coordinate geometry problem that is easier than a pure geometry (Euclidean geometry) problem. A geometry problem needs deep thinking (I am telling about hard problems i.e. Olympiad level problems), but a coordinate geometry problem doesn't need deep thinking ,it just needs calculations. So, let us go to the original problem.
The vertices of a triangle $ABC$ are $(a_1,b_1),(a_2,b_2),(a_3,b_3)$. Find the following coordinates:
$1)$ Incentre
$2)$ Circumcentre
$3)$ Orthocentre
$4)$ Centre of the nine point circle
Please tell me with good explanation. Thank you.
geometry analytic-geometry
geometry analytic-geometry
edited Sep 18 '17 at 3:12
Sufaid Saleel
asked Sep 18 '17 at 2:53
Sufaid SaleelSufaid Saleel
1,760829
1,760829
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
There are well known formula for the triangle centers in trilinear coordinates $x : y : z$,
$$begin{array}{rc:c}
text{name} & & x : y : z \
hline
text{incenter} & I & 1 : 1 : 1\
text{circumcenter} & O & cos A : cos B : cos C\
text{orthocenter} & H & sec A : sec B :sec C\
text{nine-point center} & N & cos(B-C) : cos(C-A) : cos(A-B)
end{array}
$$
You can convert them to Cartesian coordinates by the recipe:
$$P = (x,y,z) quad leftrightarrow quad vec{P} = frac{ax vec{A} + byvec{B} + czvec{C}}{ax + by + cz}$$
In terms of coordinates, this means
$$vec{P} = (p_1,p_2) =
left(
frac{ax a_1 + by a_2 + cz a_3}{ax + by + cz},
frac{ax b_1 + by b_2 + cz b_3}{ax + by + cz}
right)
$$
The parameters $a,b,c$ and $A,B,C$ are given by the formula:
$$begin{cases}
a &= sqrt{(a_2-a_3)^2 + (b_2 - b_3)^2}\
b &= sqrt{(a_3-a_1)^2 + (b_3 - b_1)^2}\
c &= sqrt{(a_1-a_2)^2 + (b_1 - b_2)^2}
end{cases}
quadtext{ and }quad
begin{cases}
A &= cos^{-1}frac{b^2+c^2-a^2}{2bc}\
B &= cos^{-1}frac{c^2+a^2-b^2}{2ca}\
C &= cos^{-1}frac{a^2+b^2-c^2}{2ab}
end{cases}
$$
The parameters $x, y, z$ can be obtained by plugging these expressions of $a,b,c, A,B,C$ into corresponding formula in above table.
$endgroup$
$begingroup$
@achilille hui I want the coordinate not the trilinear coordinate.I need the Cartesian coordinate .So please tell me the right way
$endgroup$
– Sufaid Saleel
Sep 18 '17 at 12:17
$begingroup$
Thanks for the great write-up. In the equation defining c, I think that $b_2 - b_3$ should be replaced by $b_1 - b_2$.
$endgroup$
– Alex338207
Jan 14 at 7:52
$begingroup$
@Alex338207 yes, that's a typo, thanks for pointing that out.
$endgroup$
– achille hui
Jan 14 at 13:28
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2433914%2ffinding-the-incentre-circumcentre-of-a-triangle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
There are well known formula for the triangle centers in trilinear coordinates $x : y : z$,
$$begin{array}{rc:c}
text{name} & & x : y : z \
hline
text{incenter} & I & 1 : 1 : 1\
text{circumcenter} & O & cos A : cos B : cos C\
text{orthocenter} & H & sec A : sec B :sec C\
text{nine-point center} & N & cos(B-C) : cos(C-A) : cos(A-B)
end{array}
$$
You can convert them to Cartesian coordinates by the recipe:
$$P = (x,y,z) quad leftrightarrow quad vec{P} = frac{ax vec{A} + byvec{B} + czvec{C}}{ax + by + cz}$$
In terms of coordinates, this means
$$vec{P} = (p_1,p_2) =
left(
frac{ax a_1 + by a_2 + cz a_3}{ax + by + cz},
frac{ax b_1 + by b_2 + cz b_3}{ax + by + cz}
right)
$$
The parameters $a,b,c$ and $A,B,C$ are given by the formula:
$$begin{cases}
a &= sqrt{(a_2-a_3)^2 + (b_2 - b_3)^2}\
b &= sqrt{(a_3-a_1)^2 + (b_3 - b_1)^2}\
c &= sqrt{(a_1-a_2)^2 + (b_1 - b_2)^2}
end{cases}
quadtext{ and }quad
begin{cases}
A &= cos^{-1}frac{b^2+c^2-a^2}{2bc}\
B &= cos^{-1}frac{c^2+a^2-b^2}{2ca}\
C &= cos^{-1}frac{a^2+b^2-c^2}{2ab}
end{cases}
$$
The parameters $x, y, z$ can be obtained by plugging these expressions of $a,b,c, A,B,C$ into corresponding formula in above table.
$endgroup$
$begingroup$
@achilille hui I want the coordinate not the trilinear coordinate.I need the Cartesian coordinate .So please tell me the right way
$endgroup$
– Sufaid Saleel
Sep 18 '17 at 12:17
$begingroup$
Thanks for the great write-up. In the equation defining c, I think that $b_2 - b_3$ should be replaced by $b_1 - b_2$.
$endgroup$
– Alex338207
Jan 14 at 7:52
$begingroup$
@Alex338207 yes, that's a typo, thanks for pointing that out.
$endgroup$
– achille hui
Jan 14 at 13:28
add a comment |
$begingroup$
There are well known formula for the triangle centers in trilinear coordinates $x : y : z$,
$$begin{array}{rc:c}
text{name} & & x : y : z \
hline
text{incenter} & I & 1 : 1 : 1\
text{circumcenter} & O & cos A : cos B : cos C\
text{orthocenter} & H & sec A : sec B :sec C\
text{nine-point center} & N & cos(B-C) : cos(C-A) : cos(A-B)
end{array}
$$
You can convert them to Cartesian coordinates by the recipe:
$$P = (x,y,z) quad leftrightarrow quad vec{P} = frac{ax vec{A} + byvec{B} + czvec{C}}{ax + by + cz}$$
In terms of coordinates, this means
$$vec{P} = (p_1,p_2) =
left(
frac{ax a_1 + by a_2 + cz a_3}{ax + by + cz},
frac{ax b_1 + by b_2 + cz b_3}{ax + by + cz}
right)
$$
The parameters $a,b,c$ and $A,B,C$ are given by the formula:
$$begin{cases}
a &= sqrt{(a_2-a_3)^2 + (b_2 - b_3)^2}\
b &= sqrt{(a_3-a_1)^2 + (b_3 - b_1)^2}\
c &= sqrt{(a_1-a_2)^2 + (b_1 - b_2)^2}
end{cases}
quadtext{ and }quad
begin{cases}
A &= cos^{-1}frac{b^2+c^2-a^2}{2bc}\
B &= cos^{-1}frac{c^2+a^2-b^2}{2ca}\
C &= cos^{-1}frac{a^2+b^2-c^2}{2ab}
end{cases}
$$
The parameters $x, y, z$ can be obtained by plugging these expressions of $a,b,c, A,B,C$ into corresponding formula in above table.
$endgroup$
$begingroup$
@achilille hui I want the coordinate not the trilinear coordinate.I need the Cartesian coordinate .So please tell me the right way
$endgroup$
– Sufaid Saleel
Sep 18 '17 at 12:17
$begingroup$
Thanks for the great write-up. In the equation defining c, I think that $b_2 - b_3$ should be replaced by $b_1 - b_2$.
$endgroup$
– Alex338207
Jan 14 at 7:52
$begingroup$
@Alex338207 yes, that's a typo, thanks for pointing that out.
$endgroup$
– achille hui
Jan 14 at 13:28
add a comment |
$begingroup$
There are well known formula for the triangle centers in trilinear coordinates $x : y : z$,
$$begin{array}{rc:c}
text{name} & & x : y : z \
hline
text{incenter} & I & 1 : 1 : 1\
text{circumcenter} & O & cos A : cos B : cos C\
text{orthocenter} & H & sec A : sec B :sec C\
text{nine-point center} & N & cos(B-C) : cos(C-A) : cos(A-B)
end{array}
$$
You can convert them to Cartesian coordinates by the recipe:
$$P = (x,y,z) quad leftrightarrow quad vec{P} = frac{ax vec{A} + byvec{B} + czvec{C}}{ax + by + cz}$$
In terms of coordinates, this means
$$vec{P} = (p_1,p_2) =
left(
frac{ax a_1 + by a_2 + cz a_3}{ax + by + cz},
frac{ax b_1 + by b_2 + cz b_3}{ax + by + cz}
right)
$$
The parameters $a,b,c$ and $A,B,C$ are given by the formula:
$$begin{cases}
a &= sqrt{(a_2-a_3)^2 + (b_2 - b_3)^2}\
b &= sqrt{(a_3-a_1)^2 + (b_3 - b_1)^2}\
c &= sqrt{(a_1-a_2)^2 + (b_1 - b_2)^2}
end{cases}
quadtext{ and }quad
begin{cases}
A &= cos^{-1}frac{b^2+c^2-a^2}{2bc}\
B &= cos^{-1}frac{c^2+a^2-b^2}{2ca}\
C &= cos^{-1}frac{a^2+b^2-c^2}{2ab}
end{cases}
$$
The parameters $x, y, z$ can be obtained by plugging these expressions of $a,b,c, A,B,C$ into corresponding formula in above table.
$endgroup$
There are well known formula for the triangle centers in trilinear coordinates $x : y : z$,
$$begin{array}{rc:c}
text{name} & & x : y : z \
hline
text{incenter} & I & 1 : 1 : 1\
text{circumcenter} & O & cos A : cos B : cos C\
text{orthocenter} & H & sec A : sec B :sec C\
text{nine-point center} & N & cos(B-C) : cos(C-A) : cos(A-B)
end{array}
$$
You can convert them to Cartesian coordinates by the recipe:
$$P = (x,y,z) quad leftrightarrow quad vec{P} = frac{ax vec{A} + byvec{B} + czvec{C}}{ax + by + cz}$$
In terms of coordinates, this means
$$vec{P} = (p_1,p_2) =
left(
frac{ax a_1 + by a_2 + cz a_3}{ax + by + cz},
frac{ax b_1 + by b_2 + cz b_3}{ax + by + cz}
right)
$$
The parameters $a,b,c$ and $A,B,C$ are given by the formula:
$$begin{cases}
a &= sqrt{(a_2-a_3)^2 + (b_2 - b_3)^2}\
b &= sqrt{(a_3-a_1)^2 + (b_3 - b_1)^2}\
c &= sqrt{(a_1-a_2)^2 + (b_1 - b_2)^2}
end{cases}
quadtext{ and }quad
begin{cases}
A &= cos^{-1}frac{b^2+c^2-a^2}{2bc}\
B &= cos^{-1}frac{c^2+a^2-b^2}{2ca}\
C &= cos^{-1}frac{a^2+b^2-c^2}{2ab}
end{cases}
$$
The parameters $x, y, z$ can be obtained by plugging these expressions of $a,b,c, A,B,C$ into corresponding formula in above table.
edited Jan 14 at 13:27
answered Sep 18 '17 at 8:46
achille huiachille hui
96.3k5132261
96.3k5132261
$begingroup$
@achilille hui I want the coordinate not the trilinear coordinate.I need the Cartesian coordinate .So please tell me the right way
$endgroup$
– Sufaid Saleel
Sep 18 '17 at 12:17
$begingroup$
Thanks for the great write-up. In the equation defining c, I think that $b_2 - b_3$ should be replaced by $b_1 - b_2$.
$endgroup$
– Alex338207
Jan 14 at 7:52
$begingroup$
@Alex338207 yes, that's a typo, thanks for pointing that out.
$endgroup$
– achille hui
Jan 14 at 13:28
add a comment |
$begingroup$
@achilille hui I want the coordinate not the trilinear coordinate.I need the Cartesian coordinate .So please tell me the right way
$endgroup$
– Sufaid Saleel
Sep 18 '17 at 12:17
$begingroup$
Thanks for the great write-up. In the equation defining c, I think that $b_2 - b_3$ should be replaced by $b_1 - b_2$.
$endgroup$
– Alex338207
Jan 14 at 7:52
$begingroup$
@Alex338207 yes, that's a typo, thanks for pointing that out.
$endgroup$
– achille hui
Jan 14 at 13:28
$begingroup$
@achilille hui I want the coordinate not the trilinear coordinate.I need the Cartesian coordinate .So please tell me the right way
$endgroup$
– Sufaid Saleel
Sep 18 '17 at 12:17
$begingroup$
@achilille hui I want the coordinate not the trilinear coordinate.I need the Cartesian coordinate .So please tell me the right way
$endgroup$
– Sufaid Saleel
Sep 18 '17 at 12:17
$begingroup$
Thanks for the great write-up. In the equation defining c, I think that $b_2 - b_3$ should be replaced by $b_1 - b_2$.
$endgroup$
– Alex338207
Jan 14 at 7:52
$begingroup$
Thanks for the great write-up. In the equation defining c, I think that $b_2 - b_3$ should be replaced by $b_1 - b_2$.
$endgroup$
– Alex338207
Jan 14 at 7:52
$begingroup$
@Alex338207 yes, that's a typo, thanks for pointing that out.
$endgroup$
– achille hui
Jan 14 at 13:28
$begingroup$
@Alex338207 yes, that's a typo, thanks for pointing that out.
$endgroup$
– achille hui
Jan 14 at 13:28
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2433914%2ffinding-the-incentre-circumcentre-of-a-triangle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown