What is the projector decomposition of a symmetric matrix?
$begingroup$
Hi I am studying linear algebra and I bumped into projector decomposition of symmetric matrices and I just don’t know what it is can anyone of you help please?
linear-algebra matrices
$endgroup$
add a comment |
$begingroup$
Hi I am studying linear algebra and I bumped into projector decomposition of symmetric matrices and I just don’t know what it is can anyone of you help please?
linear-algebra matrices
$endgroup$
add a comment |
$begingroup$
Hi I am studying linear algebra and I bumped into projector decomposition of symmetric matrices and I just don’t know what it is can anyone of you help please?
linear-algebra matrices
$endgroup$
Hi I am studying linear algebra and I bumped into projector decomposition of symmetric matrices and I just don’t know what it is can anyone of you help please?
linear-algebra matrices
linear-algebra matrices
asked Jan 4 at 21:42
Ali DahudAli Dahud
31
31
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $A$ is a symmetric matrix over a real space or a Hermitian matrix over a complex space, then
$$
Ax = sum_{n=1}^{N}lambda_n P_nx
$$
where ${ lambda_1,cdots,lambda_N }$ are the distinct eigenvalues of $A$, and where $P_n$ is the orthogonal projection onto the eigenspace $mathcal{ker}(A-lambda_n I)$. For example, if ${ e_{n,1},e_{n,2},cdots,e_{n,k_n} }$ is an orthonormal basis of $mbox{ker}(A-lambda_n I)$, then the orthogona projection $P_n$ may be written as
$$
P_nx = sum_{j=1}^{k_n}langle x,e_{n,j}rangle e_{n,j}
$$
These projections satisfy:
$$
P_n^2 = P_n, \ P_n^*= P_n; (mbox{or } P_n^{T}=P_n mbox{ for real spaces}) \
P_nP_m = 0 mbox{ for } nne m \
AP_n = lambda_n P_n \
sum_{n=1}^{N} P_n = I,\
A = sum_{n=1}^{N}lambda_n P_n.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062145%2fwhat-is-the-projector-decomposition-of-a-symmetric-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $A$ is a symmetric matrix over a real space or a Hermitian matrix over a complex space, then
$$
Ax = sum_{n=1}^{N}lambda_n P_nx
$$
where ${ lambda_1,cdots,lambda_N }$ are the distinct eigenvalues of $A$, and where $P_n$ is the orthogonal projection onto the eigenspace $mathcal{ker}(A-lambda_n I)$. For example, if ${ e_{n,1},e_{n,2},cdots,e_{n,k_n} }$ is an orthonormal basis of $mbox{ker}(A-lambda_n I)$, then the orthogona projection $P_n$ may be written as
$$
P_nx = sum_{j=1}^{k_n}langle x,e_{n,j}rangle e_{n,j}
$$
These projections satisfy:
$$
P_n^2 = P_n, \ P_n^*= P_n; (mbox{or } P_n^{T}=P_n mbox{ for real spaces}) \
P_nP_m = 0 mbox{ for } nne m \
AP_n = lambda_n P_n \
sum_{n=1}^{N} P_n = I,\
A = sum_{n=1}^{N}lambda_n P_n.
$$
$endgroup$
add a comment |
$begingroup$
If $A$ is a symmetric matrix over a real space or a Hermitian matrix over a complex space, then
$$
Ax = sum_{n=1}^{N}lambda_n P_nx
$$
where ${ lambda_1,cdots,lambda_N }$ are the distinct eigenvalues of $A$, and where $P_n$ is the orthogonal projection onto the eigenspace $mathcal{ker}(A-lambda_n I)$. For example, if ${ e_{n,1},e_{n,2},cdots,e_{n,k_n} }$ is an orthonormal basis of $mbox{ker}(A-lambda_n I)$, then the orthogona projection $P_n$ may be written as
$$
P_nx = sum_{j=1}^{k_n}langle x,e_{n,j}rangle e_{n,j}
$$
These projections satisfy:
$$
P_n^2 = P_n, \ P_n^*= P_n; (mbox{or } P_n^{T}=P_n mbox{ for real spaces}) \
P_nP_m = 0 mbox{ for } nne m \
AP_n = lambda_n P_n \
sum_{n=1}^{N} P_n = I,\
A = sum_{n=1}^{N}lambda_n P_n.
$$
$endgroup$
add a comment |
$begingroup$
If $A$ is a symmetric matrix over a real space or a Hermitian matrix over a complex space, then
$$
Ax = sum_{n=1}^{N}lambda_n P_nx
$$
where ${ lambda_1,cdots,lambda_N }$ are the distinct eigenvalues of $A$, and where $P_n$ is the orthogonal projection onto the eigenspace $mathcal{ker}(A-lambda_n I)$. For example, if ${ e_{n,1},e_{n,2},cdots,e_{n,k_n} }$ is an orthonormal basis of $mbox{ker}(A-lambda_n I)$, then the orthogona projection $P_n$ may be written as
$$
P_nx = sum_{j=1}^{k_n}langle x,e_{n,j}rangle e_{n,j}
$$
These projections satisfy:
$$
P_n^2 = P_n, \ P_n^*= P_n; (mbox{or } P_n^{T}=P_n mbox{ for real spaces}) \
P_nP_m = 0 mbox{ for } nne m \
AP_n = lambda_n P_n \
sum_{n=1}^{N} P_n = I,\
A = sum_{n=1}^{N}lambda_n P_n.
$$
$endgroup$
If $A$ is a symmetric matrix over a real space or a Hermitian matrix over a complex space, then
$$
Ax = sum_{n=1}^{N}lambda_n P_nx
$$
where ${ lambda_1,cdots,lambda_N }$ are the distinct eigenvalues of $A$, and where $P_n$ is the orthogonal projection onto the eigenspace $mathcal{ker}(A-lambda_n I)$. For example, if ${ e_{n,1},e_{n,2},cdots,e_{n,k_n} }$ is an orthonormal basis of $mbox{ker}(A-lambda_n I)$, then the orthogona projection $P_n$ may be written as
$$
P_nx = sum_{j=1}^{k_n}langle x,e_{n,j}rangle e_{n,j}
$$
These projections satisfy:
$$
P_n^2 = P_n, \ P_n^*= P_n; (mbox{or } P_n^{T}=P_n mbox{ for real spaces}) \
P_nP_m = 0 mbox{ for } nne m \
AP_n = lambda_n P_n \
sum_{n=1}^{N} P_n = I,\
A = sum_{n=1}^{N}lambda_n P_n.
$$
answered Jan 4 at 22:15
DisintegratingByPartsDisintegratingByParts
59.2k42580
59.2k42580
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062145%2fwhat-is-the-projector-decomposition-of-a-symmetric-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown