Does convergence in $L^1_{text{loc}}(mathbb{R}^n)$ implies convergence in $mathcal{D}'(mathbb{R}^n)$?
$begingroup$
Every function $fin L^1_{text{loc}}(mathbb{R}^n)$ defines an element $Lambda_f$ of $mathcal{D}'(mathbb{R}^n)$.
If $f_nto f$ in $L^1_{text{loc}}(mathbb{R}^n)$, does that mean that $Lambda_{f_n}to Lambda_f$ in $mathcal{D}'(mathbb{R}^n)$?
distribution-theory
$endgroup$
add a comment |
$begingroup$
Every function $fin L^1_{text{loc}}(mathbb{R}^n)$ defines an element $Lambda_f$ of $mathcal{D}'(mathbb{R}^n)$.
If $f_nto f$ in $L^1_{text{loc}}(mathbb{R}^n)$, does that mean that $Lambda_{f_n}to Lambda_f$ in $mathcal{D}'(mathbb{R}^n)$?
distribution-theory
$endgroup$
add a comment |
$begingroup$
Every function $fin L^1_{text{loc}}(mathbb{R}^n)$ defines an element $Lambda_f$ of $mathcal{D}'(mathbb{R}^n)$.
If $f_nto f$ in $L^1_{text{loc}}(mathbb{R}^n)$, does that mean that $Lambda_{f_n}to Lambda_f$ in $mathcal{D}'(mathbb{R}^n)$?
distribution-theory
$endgroup$
Every function $fin L^1_{text{loc}}(mathbb{R}^n)$ defines an element $Lambda_f$ of $mathcal{D}'(mathbb{R}^n)$.
If $f_nto f$ in $L^1_{text{loc}}(mathbb{R}^n)$, does that mean that $Lambda_{f_n}to Lambda_f$ in $mathcal{D}'(mathbb{R}^n)$?
distribution-theory
distribution-theory
asked Jan 4 at 12:12
Gabriel RibeiroGabriel Ribeiro
1,441522
1,441522
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes. The point is that convergence in $L^1_{mathrm{loc}}(mathbb R^n)$ implies convergence in each $L^1(Omega)$ for every bounded domain $Omega subset mathbb R^n,$ and hence weak $L^1$ convergence in $Omega.$ But $L^1(Omega)^* cong L^{infty}(Omega),$ which contains $C^{infty}_c(Omega).$
Going along these lines, we can check this directly. Suppose $f_n rightarrow f$ in $L^1_{mathrm{loc}}(mathbb R^n)$ and let $varphi in C^{infty}_c(mathbb R^n).$ Pick a bounded domain $Omega subset mathbb R^n$ such that $operatorname{supp} varphi subset Omega$ and note that $f_n rightarrow f$ in $L^1(Omega).$ Then we get,
$$ Lambda_{f_n}(varphi) - Lambda_f(varphi) = int_{mathbb R^n} (f_n - f)varphi ,mathrm{d}x = int_{Omega} (f_n - f)varphi ,mathrm{d}x leq lVert f_n - frVert_{L^1(Omega)} lVert varphi rVert_{L^{infty}_{Omega}} longrightarrow 0 $$
as $n rightarrow infty.$ Since $varphi$ was arbitrary, $Lambda_{f_n} rightarrow Lambda_f$ in $mathcal{D}'(mathbb R^n).$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061586%2fdoes-convergence-in-l1-textloc-mathbbrn-implies-convergence-in-ma%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes. The point is that convergence in $L^1_{mathrm{loc}}(mathbb R^n)$ implies convergence in each $L^1(Omega)$ for every bounded domain $Omega subset mathbb R^n,$ and hence weak $L^1$ convergence in $Omega.$ But $L^1(Omega)^* cong L^{infty}(Omega),$ which contains $C^{infty}_c(Omega).$
Going along these lines, we can check this directly. Suppose $f_n rightarrow f$ in $L^1_{mathrm{loc}}(mathbb R^n)$ and let $varphi in C^{infty}_c(mathbb R^n).$ Pick a bounded domain $Omega subset mathbb R^n$ such that $operatorname{supp} varphi subset Omega$ and note that $f_n rightarrow f$ in $L^1(Omega).$ Then we get,
$$ Lambda_{f_n}(varphi) - Lambda_f(varphi) = int_{mathbb R^n} (f_n - f)varphi ,mathrm{d}x = int_{Omega} (f_n - f)varphi ,mathrm{d}x leq lVert f_n - frVert_{L^1(Omega)} lVert varphi rVert_{L^{infty}_{Omega}} longrightarrow 0 $$
as $n rightarrow infty.$ Since $varphi$ was arbitrary, $Lambda_{f_n} rightarrow Lambda_f$ in $mathcal{D}'(mathbb R^n).$
$endgroup$
add a comment |
$begingroup$
Yes. The point is that convergence in $L^1_{mathrm{loc}}(mathbb R^n)$ implies convergence in each $L^1(Omega)$ for every bounded domain $Omega subset mathbb R^n,$ and hence weak $L^1$ convergence in $Omega.$ But $L^1(Omega)^* cong L^{infty}(Omega),$ which contains $C^{infty}_c(Omega).$
Going along these lines, we can check this directly. Suppose $f_n rightarrow f$ in $L^1_{mathrm{loc}}(mathbb R^n)$ and let $varphi in C^{infty}_c(mathbb R^n).$ Pick a bounded domain $Omega subset mathbb R^n$ such that $operatorname{supp} varphi subset Omega$ and note that $f_n rightarrow f$ in $L^1(Omega).$ Then we get,
$$ Lambda_{f_n}(varphi) - Lambda_f(varphi) = int_{mathbb R^n} (f_n - f)varphi ,mathrm{d}x = int_{Omega} (f_n - f)varphi ,mathrm{d}x leq lVert f_n - frVert_{L^1(Omega)} lVert varphi rVert_{L^{infty}_{Omega}} longrightarrow 0 $$
as $n rightarrow infty.$ Since $varphi$ was arbitrary, $Lambda_{f_n} rightarrow Lambda_f$ in $mathcal{D}'(mathbb R^n).$
$endgroup$
add a comment |
$begingroup$
Yes. The point is that convergence in $L^1_{mathrm{loc}}(mathbb R^n)$ implies convergence in each $L^1(Omega)$ for every bounded domain $Omega subset mathbb R^n,$ and hence weak $L^1$ convergence in $Omega.$ But $L^1(Omega)^* cong L^{infty}(Omega),$ which contains $C^{infty}_c(Omega).$
Going along these lines, we can check this directly. Suppose $f_n rightarrow f$ in $L^1_{mathrm{loc}}(mathbb R^n)$ and let $varphi in C^{infty}_c(mathbb R^n).$ Pick a bounded domain $Omega subset mathbb R^n$ such that $operatorname{supp} varphi subset Omega$ and note that $f_n rightarrow f$ in $L^1(Omega).$ Then we get,
$$ Lambda_{f_n}(varphi) - Lambda_f(varphi) = int_{mathbb R^n} (f_n - f)varphi ,mathrm{d}x = int_{Omega} (f_n - f)varphi ,mathrm{d}x leq lVert f_n - frVert_{L^1(Omega)} lVert varphi rVert_{L^{infty}_{Omega}} longrightarrow 0 $$
as $n rightarrow infty.$ Since $varphi$ was arbitrary, $Lambda_{f_n} rightarrow Lambda_f$ in $mathcal{D}'(mathbb R^n).$
$endgroup$
Yes. The point is that convergence in $L^1_{mathrm{loc}}(mathbb R^n)$ implies convergence in each $L^1(Omega)$ for every bounded domain $Omega subset mathbb R^n,$ and hence weak $L^1$ convergence in $Omega.$ But $L^1(Omega)^* cong L^{infty}(Omega),$ which contains $C^{infty}_c(Omega).$
Going along these lines, we can check this directly. Suppose $f_n rightarrow f$ in $L^1_{mathrm{loc}}(mathbb R^n)$ and let $varphi in C^{infty}_c(mathbb R^n).$ Pick a bounded domain $Omega subset mathbb R^n$ such that $operatorname{supp} varphi subset Omega$ and note that $f_n rightarrow f$ in $L^1(Omega).$ Then we get,
$$ Lambda_{f_n}(varphi) - Lambda_f(varphi) = int_{mathbb R^n} (f_n - f)varphi ,mathrm{d}x = int_{Omega} (f_n - f)varphi ,mathrm{d}x leq lVert f_n - frVert_{L^1(Omega)} lVert varphi rVert_{L^{infty}_{Omega}} longrightarrow 0 $$
as $n rightarrow infty.$ Since $varphi$ was arbitrary, $Lambda_{f_n} rightarrow Lambda_f$ in $mathcal{D}'(mathbb R^n).$
answered Jan 4 at 12:36
ktoiktoi
2,4061616
2,4061616
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061586%2fdoes-convergence-in-l1-textloc-mathbbrn-implies-convergence-in-ma%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown