Parallelogram identity in the wave equation
Using the parallelogram identity, I need to solve the following initial boundary value problem
for a vibrating semi-infinite string with a nonhomogeneous boundary condition:
$$ u_{tt} − u_{xx} = 0 , 0 < x < infty, t > 0 $$
$$u(0,t) = h(t)$$
$$u(x,0) = f(x), u_{t}(x,0) = g(x)$$
where $f, g, h ∈ C_2{[0, ∞)}$
I really have try to solve it, be I still dont know how to use the parallelogram identity. Thanks for your help.
Edit: The parallelogram identity is
$u(x_0 − a, t_0 − b) + u(x_0 + a, t_0 + b) = u(x_0 − b, t_0 − a) + u(x_0 + b, t_0 + a).
$
pde
add a comment |
Using the parallelogram identity, I need to solve the following initial boundary value problem
for a vibrating semi-infinite string with a nonhomogeneous boundary condition:
$$ u_{tt} − u_{xx} = 0 , 0 < x < infty, t > 0 $$
$$u(0,t) = h(t)$$
$$u(x,0) = f(x), u_{t}(x,0) = g(x)$$
where $f, g, h ∈ C_2{[0, ∞)}$
I really have try to solve it, be I still dont know how to use the parallelogram identity. Thanks for your help.
Edit: The parallelogram identity is
$u(x_0 − a, t_0 − b) + u(x_0 + a, t_0 + b) = u(x_0 − b, t_0 − a) + u(x_0 + b, t_0 + a).
$
pde
add a comment |
Using the parallelogram identity, I need to solve the following initial boundary value problem
for a vibrating semi-infinite string with a nonhomogeneous boundary condition:
$$ u_{tt} − u_{xx} = 0 , 0 < x < infty, t > 0 $$
$$u(0,t) = h(t)$$
$$u(x,0) = f(x), u_{t}(x,0) = g(x)$$
where $f, g, h ∈ C_2{[0, ∞)}$
I really have try to solve it, be I still dont know how to use the parallelogram identity. Thanks for your help.
Edit: The parallelogram identity is
$u(x_0 − a, t_0 − b) + u(x_0 + a, t_0 + b) = u(x_0 − b, t_0 − a) + u(x_0 + b, t_0 + a).
$
pde
Using the parallelogram identity, I need to solve the following initial boundary value problem
for a vibrating semi-infinite string with a nonhomogeneous boundary condition:
$$ u_{tt} − u_{xx} = 0 , 0 < x < infty, t > 0 $$
$$u(0,t) = h(t)$$
$$u(x,0) = f(x), u_{t}(x,0) = g(x)$$
where $f, g, h ∈ C_2{[0, ∞)}$
I really have try to solve it, be I still dont know how to use the parallelogram identity. Thanks for your help.
Edit: The parallelogram identity is
$u(x_0 − a, t_0 − b) + u(x_0 + a, t_0 + b) = u(x_0 − b, t_0 − a) + u(x_0 + b, t_0 + a).
$
pde
pde
edited May 24 '18 at 10:32
Dylan
12.4k31026
12.4k31026
asked Oct 29 '12 at 22:39
MariaMaria
262
262
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
I have no idea about "parallelogram identity" in PDE, I only know that this PDE problem with those types of I.C.s and B.C.s can be found the solution exactly in http://eqworld.ipmnet.ru/en/solutions/lpde/lpde201.pdf.
Case $1$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~ds=h(t)$
$u(x,t)=dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds$
Case $2$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~dsneq h(t)$
$u(x,t)=begin{cases}dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds&text{when}~x>t\dfrac{f(x+t)-f(t-x)}{2}+dfrac{1}{2}int_{t-x}^{x+t}g(s)~ds+h(t-x)&text{when}~x<tend{cases}$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f223851%2fparallelogram-identity-in-the-wave-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
I have no idea about "parallelogram identity" in PDE, I only know that this PDE problem with those types of I.C.s and B.C.s can be found the solution exactly in http://eqworld.ipmnet.ru/en/solutions/lpde/lpde201.pdf.
Case $1$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~ds=h(t)$
$u(x,t)=dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds$
Case $2$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~dsneq h(t)$
$u(x,t)=begin{cases}dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds&text{when}~x>t\dfrac{f(x+t)-f(t-x)}{2}+dfrac{1}{2}int_{t-x}^{x+t}g(s)~ds+h(t-x)&text{when}~x<tend{cases}$
add a comment |
I have no idea about "parallelogram identity" in PDE, I only know that this PDE problem with those types of I.C.s and B.C.s can be found the solution exactly in http://eqworld.ipmnet.ru/en/solutions/lpde/lpde201.pdf.
Case $1$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~ds=h(t)$
$u(x,t)=dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds$
Case $2$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~dsneq h(t)$
$u(x,t)=begin{cases}dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds&text{when}~x>t\dfrac{f(x+t)-f(t-x)}{2}+dfrac{1}{2}int_{t-x}^{x+t}g(s)~ds+h(t-x)&text{when}~x<tend{cases}$
add a comment |
I have no idea about "parallelogram identity" in PDE, I only know that this PDE problem with those types of I.C.s and B.C.s can be found the solution exactly in http://eqworld.ipmnet.ru/en/solutions/lpde/lpde201.pdf.
Case $1$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~ds=h(t)$
$u(x,t)=dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds$
Case $2$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~dsneq h(t)$
$u(x,t)=begin{cases}dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds&text{when}~x>t\dfrac{f(x+t)-f(t-x)}{2}+dfrac{1}{2}int_{t-x}^{x+t}g(s)~ds+h(t-x)&text{when}~x<tend{cases}$
I have no idea about "parallelogram identity" in PDE, I only know that this PDE problem with those types of I.C.s and B.C.s can be found the solution exactly in http://eqworld.ipmnet.ru/en/solutions/lpde/lpde201.pdf.
Case $1$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~ds=h(t)$
$u(x,t)=dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds$
Case $2$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~dsneq h(t)$
$u(x,t)=begin{cases}dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds&text{when}~x>t\dfrac{f(x+t)-f(t-x)}{2}+dfrac{1}{2}int_{t-x}^{x+t}g(s)~ds+h(t-x)&text{when}~x<tend{cases}$
edited Jan 5 '13 at 22:02
answered Oct 29 '12 at 23:28
doraemonpauldoraemonpaul
12.5k31660
12.5k31660
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f223851%2fparallelogram-identity-in-the-wave-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown