Parallelogram identity in the wave equation












3














Using the parallelogram identity, I need to solve the following initial boundary value problem
for a vibrating semi-infinite string with a nonhomogeneous boundary condition:




$$ u_{tt} − u_{xx} = 0 , 0 < x < infty, t > 0 $$
$$u(0,t) = h(t)$$
$$u(x,0) = f(x), u_{t}(x,0) = g(x)$$
where $f, g, h ∈ C_2{[0, ∞)}$




I really have try to solve it, be I still dont know how to use the parallelogram identity. Thanks for your help.



Edit: The parallelogram identity is



$u(x_0 − a, t_0 − b) + u(x_0 + a, t_0 + b) = u(x_0 − b, t_0 − a) + u(x_0 + b, t_0 + a).
$










share|cite|improve this question





























    3














    Using the parallelogram identity, I need to solve the following initial boundary value problem
    for a vibrating semi-infinite string with a nonhomogeneous boundary condition:




    $$ u_{tt} − u_{xx} = 0 , 0 < x < infty, t > 0 $$
    $$u(0,t) = h(t)$$
    $$u(x,0) = f(x), u_{t}(x,0) = g(x)$$
    where $f, g, h ∈ C_2{[0, ∞)}$




    I really have try to solve it, be I still dont know how to use the parallelogram identity. Thanks for your help.



    Edit: The parallelogram identity is



    $u(x_0 − a, t_0 − b) + u(x_0 + a, t_0 + b) = u(x_0 − b, t_0 − a) + u(x_0 + b, t_0 + a).
    $










    share|cite|improve this question



























      3












      3








      3







      Using the parallelogram identity, I need to solve the following initial boundary value problem
      for a vibrating semi-infinite string with a nonhomogeneous boundary condition:




      $$ u_{tt} − u_{xx} = 0 , 0 < x < infty, t > 0 $$
      $$u(0,t) = h(t)$$
      $$u(x,0) = f(x), u_{t}(x,0) = g(x)$$
      where $f, g, h ∈ C_2{[0, ∞)}$




      I really have try to solve it, be I still dont know how to use the parallelogram identity. Thanks for your help.



      Edit: The parallelogram identity is



      $u(x_0 − a, t_0 − b) + u(x_0 + a, t_0 + b) = u(x_0 − b, t_0 − a) + u(x_0 + b, t_0 + a).
      $










      share|cite|improve this question















      Using the parallelogram identity, I need to solve the following initial boundary value problem
      for a vibrating semi-infinite string with a nonhomogeneous boundary condition:




      $$ u_{tt} − u_{xx} = 0 , 0 < x < infty, t > 0 $$
      $$u(0,t) = h(t)$$
      $$u(x,0) = f(x), u_{t}(x,0) = g(x)$$
      where $f, g, h ∈ C_2{[0, ∞)}$




      I really have try to solve it, be I still dont know how to use the parallelogram identity. Thanks for your help.



      Edit: The parallelogram identity is



      $u(x_0 − a, t_0 − b) + u(x_0 + a, t_0 + b) = u(x_0 − b, t_0 − a) + u(x_0 + b, t_0 + a).
      $







      pde






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited May 24 '18 at 10:32









      Dylan

      12.4k31026




      12.4k31026










      asked Oct 29 '12 at 22:39









      MariaMaria

      262




      262






















          1 Answer
          1






          active

          oldest

          votes


















          0














          I have no idea about "parallelogram identity" in PDE, I only know that this PDE problem with those types of I.C.s and B.C.s can be found the solution exactly in http://eqworld.ipmnet.ru/en/solutions/lpde/lpde201.pdf.



          Case $1$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~ds=h(t)$



          $u(x,t)=dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds$



          Case $2$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~dsneq h(t)$



          $u(x,t)=begin{cases}dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds&text{when}~x>t\dfrac{f(x+t)-f(t-x)}{2}+dfrac{1}{2}int_{t-x}^{x+t}g(s)~ds+h(t-x)&text{when}~x<tend{cases}$






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f223851%2fparallelogram-identity-in-the-wave-equation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            I have no idea about "parallelogram identity" in PDE, I only know that this PDE problem with those types of I.C.s and B.C.s can be found the solution exactly in http://eqworld.ipmnet.ru/en/solutions/lpde/lpde201.pdf.



            Case $1$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~ds=h(t)$



            $u(x,t)=dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds$



            Case $2$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~dsneq h(t)$



            $u(x,t)=begin{cases}dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds&text{when}~x>t\dfrac{f(x+t)-f(t-x)}{2}+dfrac{1}{2}int_{t-x}^{x+t}g(s)~ds+h(t-x)&text{when}~x<tend{cases}$






            share|cite|improve this answer




























              0














              I have no idea about "parallelogram identity" in PDE, I only know that this PDE problem with those types of I.C.s and B.C.s can be found the solution exactly in http://eqworld.ipmnet.ru/en/solutions/lpde/lpde201.pdf.



              Case $1$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~ds=h(t)$



              $u(x,t)=dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds$



              Case $2$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~dsneq h(t)$



              $u(x,t)=begin{cases}dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds&text{when}~x>t\dfrac{f(x+t)-f(t-x)}{2}+dfrac{1}{2}int_{t-x}^{x+t}g(s)~ds+h(t-x)&text{when}~x<tend{cases}$






              share|cite|improve this answer


























                0












                0








                0






                I have no idea about "parallelogram identity" in PDE, I only know that this PDE problem with those types of I.C.s and B.C.s can be found the solution exactly in http://eqworld.ipmnet.ru/en/solutions/lpde/lpde201.pdf.



                Case $1$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~ds=h(t)$



                $u(x,t)=dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds$



                Case $2$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~dsneq h(t)$



                $u(x,t)=begin{cases}dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds&text{when}~x>t\dfrac{f(x+t)-f(t-x)}{2}+dfrac{1}{2}int_{t-x}^{x+t}g(s)~ds+h(t-x)&text{when}~x<tend{cases}$






                share|cite|improve this answer














                I have no idea about "parallelogram identity" in PDE, I only know that this PDE problem with those types of I.C.s and B.C.s can be found the solution exactly in http://eqworld.ipmnet.ru/en/solutions/lpde/lpde201.pdf.



                Case $1$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~ds=h(t)$



                $u(x,t)=dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds$



                Case $2$: $dfrac{f(t)+f(-t)}{2}+dfrac{1}{2}int_{-t}^t g(s)~dsneq h(t)$



                $u(x,t)=begin{cases}dfrac{f(x+t)+f(x-t)}{2}+dfrac{1}{2}int_{x-t}^{x+t}g(s)~ds&text{when}~x>t\dfrac{f(x+t)-f(t-x)}{2}+dfrac{1}{2}int_{t-x}^{x+t}g(s)~ds+h(t-x)&text{when}~x<tend{cases}$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 5 '13 at 22:02

























                answered Oct 29 '12 at 23:28









                doraemonpauldoraemonpaul

                12.5k31660




                12.5k31660






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f223851%2fparallelogram-identity-in-the-wave-equation%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Human spaceflight

                    Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                    File:DeusFollowingSea.jpg