Equivalence of two antiderivatives involving trigonometric/hyperbolic functions
$begingroup$
I am struggling to see how two antiderivatives of the same function—obtained in two different ways—are equivalent (what I mean by equivalent is that they differ from just a constant), if they even are equivalent.
The function in question is
$$
begin{align}
f colon quad {xinmathbb{R} mid e^{2x} ge 9} &tomathbb{R}\
x &mapsto f(x) = frac{1}{sqrt{e^{2x} - 9}}
end{align},.
$$
Wanting to find $I = displaystyleint f(x)mathrm{d}x$, I proceeded as follows.
$$
int frac{1}{sqrt{e^{2x} - 9}}mathrm{d}x = frac{1}{3} int frac{1}{sqrt{left(dfrac{e^x}{3}right)^2 - 1}}mathrm{d}x,.
$$
Since $left(frac{e^x}{3}right)^2 in[1,+infty]$ and the image of $cosh$ is $[1, +infty)$,
$$exists t in mathbb{R}colonquad left(dfrac{e^x}{3}right)^2 = cosh^2t\
Rightarrow mathrm{d}x = tanh t mathrm{d}t,.$$
Thus,
$$
I = frac{1}{3} int frac{tanh t}{sqrt{cosh^2 t - 1}}mathrm{d}t = frac{1}{3}int mathrm{sech} t mathrm{d}t,.
$$
Here is where the two different ways diverge. The first thing I tried was using the hyperbolic function's definition.
$$
I = frac{1}{3}int frac{2e^t}{e^{2t} + 1} mathrm{d}t,;
qquadtext{let}quad
begin{cases}
u = e^t\
mathrm{d}u = e^tmathrm{d}t
end{cases}\ \
Rightarrow I = frac{2}{3} int frac{1}{u^2 + 1} mathrm{d}u = frac{2}{3} arctan u + C = frac{2}{3} arctan e^t + C = \
= frac{2}{3} arctan e^{text{arccosh} frac{e^x}{3}} + C = frac{2}{3} arctan e^{lnleft(frac{e^x + sqrt{e^{2x}-9}}{3}right)} + C =\
= frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C,.
$$
The alternative solution is
$$
I = frac{1}{3}int mathrm{sech} t mathrm{d}t = frac{1}{3}int frac{cosh t}{cosh^2 t} mathrm{d}t = frac{1}{3}int frac{cosh t}{1 +sinh^2 t} mathrm{d}t =\
= frac{1}{3}arctan left(sinh tright) + C = frac{1}{3}arctan left(sinh left(mathrm{arccosh} frac{e^x}{3}right)right) + C = frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C,.
$$
I don't see any obvious way in which $$frac{2}{3} arctan left(frac{e^x + sqrt{e^{2x}-9}}{3}right) + C$$ and $$frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C$$ are equivalent antiderivatives, although they do seem to be.
Update
Following Yuriy S's suggestion, I tried the following. Let
$$
s = frac{sqrt{e^{2x} - 9}}{3},.
$$
Thus,
$$
arctan s = 2arctan frac{sqrt{1+s^2}-1}{s} = 2arctan frac{sqrt{1+frac{e^{2x}-9}{9}}-1}{frac{sqrt{e^x - 9}}{3}} = 2arctan frac{3e^x-3}{sqrt{e^x - 9}},.
$$
On the other hand, let
$$
r = frac{e^x + sqrt{e^{2x} - 9}}{3},,
$$
so that
$$
frac{1}{r} = frac{3}{e^x + sqrt{e^{2x} - 9}} cdot frac{e^x - sqrt{e^{2x} - 9}}{e^x - sqrt{e^{2x} - 9}} = frac{e^x - sqrt{e^{2x} - 9}}{3},.
$$
I was striving to apply the formula
$$
arctan x + arctan frac{1}{x} = pmfrac{pi}{2}
$$
but I got stuck here.
integration hyperbolic-functions
$endgroup$
add a comment |
$begingroup$
I am struggling to see how two antiderivatives of the same function—obtained in two different ways—are equivalent (what I mean by equivalent is that they differ from just a constant), if they even are equivalent.
The function in question is
$$
begin{align}
f colon quad {xinmathbb{R} mid e^{2x} ge 9} &tomathbb{R}\
x &mapsto f(x) = frac{1}{sqrt{e^{2x} - 9}}
end{align},.
$$
Wanting to find $I = displaystyleint f(x)mathrm{d}x$, I proceeded as follows.
$$
int frac{1}{sqrt{e^{2x} - 9}}mathrm{d}x = frac{1}{3} int frac{1}{sqrt{left(dfrac{e^x}{3}right)^2 - 1}}mathrm{d}x,.
$$
Since $left(frac{e^x}{3}right)^2 in[1,+infty]$ and the image of $cosh$ is $[1, +infty)$,
$$exists t in mathbb{R}colonquad left(dfrac{e^x}{3}right)^2 = cosh^2t\
Rightarrow mathrm{d}x = tanh t mathrm{d}t,.$$
Thus,
$$
I = frac{1}{3} int frac{tanh t}{sqrt{cosh^2 t - 1}}mathrm{d}t = frac{1}{3}int mathrm{sech} t mathrm{d}t,.
$$
Here is where the two different ways diverge. The first thing I tried was using the hyperbolic function's definition.
$$
I = frac{1}{3}int frac{2e^t}{e^{2t} + 1} mathrm{d}t,;
qquadtext{let}quad
begin{cases}
u = e^t\
mathrm{d}u = e^tmathrm{d}t
end{cases}\ \
Rightarrow I = frac{2}{3} int frac{1}{u^2 + 1} mathrm{d}u = frac{2}{3} arctan u + C = frac{2}{3} arctan e^t + C = \
= frac{2}{3} arctan e^{text{arccosh} frac{e^x}{3}} + C = frac{2}{3} arctan e^{lnleft(frac{e^x + sqrt{e^{2x}-9}}{3}right)} + C =\
= frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C,.
$$
The alternative solution is
$$
I = frac{1}{3}int mathrm{sech} t mathrm{d}t = frac{1}{3}int frac{cosh t}{cosh^2 t} mathrm{d}t = frac{1}{3}int frac{cosh t}{1 +sinh^2 t} mathrm{d}t =\
= frac{1}{3}arctan left(sinh tright) + C = frac{1}{3}arctan left(sinh left(mathrm{arccosh} frac{e^x}{3}right)right) + C = frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C,.
$$
I don't see any obvious way in which $$frac{2}{3} arctan left(frac{e^x + sqrt{e^{2x}-9}}{3}right) + C$$ and $$frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C$$ are equivalent antiderivatives, although they do seem to be.
Update
Following Yuriy S's suggestion, I tried the following. Let
$$
s = frac{sqrt{e^{2x} - 9}}{3},.
$$
Thus,
$$
arctan s = 2arctan frac{sqrt{1+s^2}-1}{s} = 2arctan frac{sqrt{1+frac{e^{2x}-9}{9}}-1}{frac{sqrt{e^x - 9}}{3}} = 2arctan frac{3e^x-3}{sqrt{e^x - 9}},.
$$
On the other hand, let
$$
r = frac{e^x + sqrt{e^{2x} - 9}}{3},,
$$
so that
$$
frac{1}{r} = frac{3}{e^x + sqrt{e^{2x} - 9}} cdot frac{e^x - sqrt{e^{2x} - 9}}{e^x - sqrt{e^{2x} - 9}} = frac{e^x - sqrt{e^{2x} - 9}}{3},.
$$
I was striving to apply the formula
$$
arctan x + arctan frac{1}{x} = pmfrac{pi}{2}
$$
but I got stuck here.
integration hyperbolic-functions
$endgroup$
1
$begingroup$
Maybe this formula might help: $$arctan x=2 arctan frac{sqrt{1+x^2}-1}{x} $$
$endgroup$
– Yuriy S
Dec 29 '18 at 16:22
add a comment |
$begingroup$
I am struggling to see how two antiderivatives of the same function—obtained in two different ways—are equivalent (what I mean by equivalent is that they differ from just a constant), if they even are equivalent.
The function in question is
$$
begin{align}
f colon quad {xinmathbb{R} mid e^{2x} ge 9} &tomathbb{R}\
x &mapsto f(x) = frac{1}{sqrt{e^{2x} - 9}}
end{align},.
$$
Wanting to find $I = displaystyleint f(x)mathrm{d}x$, I proceeded as follows.
$$
int frac{1}{sqrt{e^{2x} - 9}}mathrm{d}x = frac{1}{3} int frac{1}{sqrt{left(dfrac{e^x}{3}right)^2 - 1}}mathrm{d}x,.
$$
Since $left(frac{e^x}{3}right)^2 in[1,+infty]$ and the image of $cosh$ is $[1, +infty)$,
$$exists t in mathbb{R}colonquad left(dfrac{e^x}{3}right)^2 = cosh^2t\
Rightarrow mathrm{d}x = tanh t mathrm{d}t,.$$
Thus,
$$
I = frac{1}{3} int frac{tanh t}{sqrt{cosh^2 t - 1}}mathrm{d}t = frac{1}{3}int mathrm{sech} t mathrm{d}t,.
$$
Here is where the two different ways diverge. The first thing I tried was using the hyperbolic function's definition.
$$
I = frac{1}{3}int frac{2e^t}{e^{2t} + 1} mathrm{d}t,;
qquadtext{let}quad
begin{cases}
u = e^t\
mathrm{d}u = e^tmathrm{d}t
end{cases}\ \
Rightarrow I = frac{2}{3} int frac{1}{u^2 + 1} mathrm{d}u = frac{2}{3} arctan u + C = frac{2}{3} arctan e^t + C = \
= frac{2}{3} arctan e^{text{arccosh} frac{e^x}{3}} + C = frac{2}{3} arctan e^{lnleft(frac{e^x + sqrt{e^{2x}-9}}{3}right)} + C =\
= frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C,.
$$
The alternative solution is
$$
I = frac{1}{3}int mathrm{sech} t mathrm{d}t = frac{1}{3}int frac{cosh t}{cosh^2 t} mathrm{d}t = frac{1}{3}int frac{cosh t}{1 +sinh^2 t} mathrm{d}t =\
= frac{1}{3}arctan left(sinh tright) + C = frac{1}{3}arctan left(sinh left(mathrm{arccosh} frac{e^x}{3}right)right) + C = frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C,.
$$
I don't see any obvious way in which $$frac{2}{3} arctan left(frac{e^x + sqrt{e^{2x}-9}}{3}right) + C$$ and $$frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C$$ are equivalent antiderivatives, although they do seem to be.
Update
Following Yuriy S's suggestion, I tried the following. Let
$$
s = frac{sqrt{e^{2x} - 9}}{3},.
$$
Thus,
$$
arctan s = 2arctan frac{sqrt{1+s^2}-1}{s} = 2arctan frac{sqrt{1+frac{e^{2x}-9}{9}}-1}{frac{sqrt{e^x - 9}}{3}} = 2arctan frac{3e^x-3}{sqrt{e^x - 9}},.
$$
On the other hand, let
$$
r = frac{e^x + sqrt{e^{2x} - 9}}{3},,
$$
so that
$$
frac{1}{r} = frac{3}{e^x + sqrt{e^{2x} - 9}} cdot frac{e^x - sqrt{e^{2x} - 9}}{e^x - sqrt{e^{2x} - 9}} = frac{e^x - sqrt{e^{2x} - 9}}{3},.
$$
I was striving to apply the formula
$$
arctan x + arctan frac{1}{x} = pmfrac{pi}{2}
$$
but I got stuck here.
integration hyperbolic-functions
$endgroup$
I am struggling to see how two antiderivatives of the same function—obtained in two different ways—are equivalent (what I mean by equivalent is that they differ from just a constant), if they even are equivalent.
The function in question is
$$
begin{align}
f colon quad {xinmathbb{R} mid e^{2x} ge 9} &tomathbb{R}\
x &mapsto f(x) = frac{1}{sqrt{e^{2x} - 9}}
end{align},.
$$
Wanting to find $I = displaystyleint f(x)mathrm{d}x$, I proceeded as follows.
$$
int frac{1}{sqrt{e^{2x} - 9}}mathrm{d}x = frac{1}{3} int frac{1}{sqrt{left(dfrac{e^x}{3}right)^2 - 1}}mathrm{d}x,.
$$
Since $left(frac{e^x}{3}right)^2 in[1,+infty]$ and the image of $cosh$ is $[1, +infty)$,
$$exists t in mathbb{R}colonquad left(dfrac{e^x}{3}right)^2 = cosh^2t\
Rightarrow mathrm{d}x = tanh t mathrm{d}t,.$$
Thus,
$$
I = frac{1}{3} int frac{tanh t}{sqrt{cosh^2 t - 1}}mathrm{d}t = frac{1}{3}int mathrm{sech} t mathrm{d}t,.
$$
Here is where the two different ways diverge. The first thing I tried was using the hyperbolic function's definition.
$$
I = frac{1}{3}int frac{2e^t}{e^{2t} + 1} mathrm{d}t,;
qquadtext{let}quad
begin{cases}
u = e^t\
mathrm{d}u = e^tmathrm{d}t
end{cases}\ \
Rightarrow I = frac{2}{3} int frac{1}{u^2 + 1} mathrm{d}u = frac{2}{3} arctan u + C = frac{2}{3} arctan e^t + C = \
= frac{2}{3} arctan e^{text{arccosh} frac{e^x}{3}} + C = frac{2}{3} arctan e^{lnleft(frac{e^x + sqrt{e^{2x}-9}}{3}right)} + C =\
= frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C,.
$$
The alternative solution is
$$
I = frac{1}{3}int mathrm{sech} t mathrm{d}t = frac{1}{3}int frac{cosh t}{cosh^2 t} mathrm{d}t = frac{1}{3}int frac{cosh t}{1 +sinh^2 t} mathrm{d}t =\
= frac{1}{3}arctan left(sinh tright) + C = frac{1}{3}arctan left(sinh left(mathrm{arccosh} frac{e^x}{3}right)right) + C = frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C,.
$$
I don't see any obvious way in which $$frac{2}{3} arctan left(frac{e^x + sqrt{e^{2x}-9}}{3}right) + C$$ and $$frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C$$ are equivalent antiderivatives, although they do seem to be.
Update
Following Yuriy S's suggestion, I tried the following. Let
$$
s = frac{sqrt{e^{2x} - 9}}{3},.
$$
Thus,
$$
arctan s = 2arctan frac{sqrt{1+s^2}-1}{s} = 2arctan frac{sqrt{1+frac{e^{2x}-9}{9}}-1}{frac{sqrt{e^x - 9}}{3}} = 2arctan frac{3e^x-3}{sqrt{e^x - 9}},.
$$
On the other hand, let
$$
r = frac{e^x + sqrt{e^{2x} - 9}}{3},,
$$
so that
$$
frac{1}{r} = frac{3}{e^x + sqrt{e^{2x} - 9}} cdot frac{e^x - sqrt{e^{2x} - 9}}{e^x - sqrt{e^{2x} - 9}} = frac{e^x - sqrt{e^{2x} - 9}}{3},.
$$
I was striving to apply the formula
$$
arctan x + arctan frac{1}{x} = pmfrac{pi}{2}
$$
but I got stuck here.
integration hyperbolic-functions
integration hyperbolic-functions
edited Dec 29 '18 at 17:27
Anakhand
asked Dec 29 '18 at 16:12
AnakhandAnakhand
12311
12311
1
$begingroup$
Maybe this formula might help: $$arctan x=2 arctan frac{sqrt{1+x^2}-1}{x} $$
$endgroup$
– Yuriy S
Dec 29 '18 at 16:22
add a comment |
1
$begingroup$
Maybe this formula might help: $$arctan x=2 arctan frac{sqrt{1+x^2}-1}{x} $$
$endgroup$
– Yuriy S
Dec 29 '18 at 16:22
1
1
$begingroup$
Maybe this formula might help: $$arctan x=2 arctan frac{sqrt{1+x^2}-1}{x} $$
$endgroup$
– Yuriy S
Dec 29 '18 at 16:22
$begingroup$
Maybe this formula might help: $$arctan x=2 arctan frac{sqrt{1+x^2}-1}{x} $$
$endgroup$
– Yuriy S
Dec 29 '18 at 16:22
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Whenever you face this problem, you can check the answer by differentiating. If
$$
F(x)=frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C
$$
then
begin{align}
F'(x)
&=frac{2}{3}frac{1}{1+left(dfrac{e^{x} + sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}left(e^x+frac{e^{2x}}{sqrt{e^{2x}-9}}right) \[4px]
&=frac{2}{9+e^{2x}+e^{2x}-9+2e^xsqrt{e^{2x}-9}}
frac{e^x(e^x+sqrt{e^{2x}-9},)}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}
We can try differentiating the second function
$$
G(x)=frac{1}{3}arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$
and we get
begin{align}
G'(x)
&=frac{1}{3}frac{1}{1+left(dfrac{sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{9+e^{2x}-9}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}
Good job in both cases.
You can easily compute the constant difference by the limits at $infty$ (with $C=0$ in both cases):
$$
lim_{xtoinfty}F(x)=frac{2}{3}frac{pi}{2}=frac{pi}{3}
qquad
lim_{xtoinfty}G(x)=frac{1}{3}frac{pi}{2}=frac{pi}{6}
$$
Alternative solution: substitute $sqrt{e^{2x}-9}=3t$, so
$$
x=frac{1}{2}log(9(t^2+1))
$$
and
$$
dx=frac{t}{t^2+1},dt
$$
so the integral becomes
$$
intfrac{1}{t^2+1},dt=arctan t+C=arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$
$endgroup$
$begingroup$
Thank you! As a side-matter, would you know a way to find out what the value of the constant difference is?
$endgroup$
– Anakhand
Dec 29 '18 at 17:43
1
$begingroup$
@Anakhand Compute the limits at $infty$.
$endgroup$
– egreg
Dec 29 '18 at 17:48
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055989%2fequivalence-of-two-antiderivatives-involving-trigonometric-hyperbolic-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Whenever you face this problem, you can check the answer by differentiating. If
$$
F(x)=frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C
$$
then
begin{align}
F'(x)
&=frac{2}{3}frac{1}{1+left(dfrac{e^{x} + sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}left(e^x+frac{e^{2x}}{sqrt{e^{2x}-9}}right) \[4px]
&=frac{2}{9+e^{2x}+e^{2x}-9+2e^xsqrt{e^{2x}-9}}
frac{e^x(e^x+sqrt{e^{2x}-9},)}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}
We can try differentiating the second function
$$
G(x)=frac{1}{3}arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$
and we get
begin{align}
G'(x)
&=frac{1}{3}frac{1}{1+left(dfrac{sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{9+e^{2x}-9}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}
Good job in both cases.
You can easily compute the constant difference by the limits at $infty$ (with $C=0$ in both cases):
$$
lim_{xtoinfty}F(x)=frac{2}{3}frac{pi}{2}=frac{pi}{3}
qquad
lim_{xtoinfty}G(x)=frac{1}{3}frac{pi}{2}=frac{pi}{6}
$$
Alternative solution: substitute $sqrt{e^{2x}-9}=3t$, so
$$
x=frac{1}{2}log(9(t^2+1))
$$
and
$$
dx=frac{t}{t^2+1},dt
$$
so the integral becomes
$$
intfrac{1}{t^2+1},dt=arctan t+C=arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$
$endgroup$
$begingroup$
Thank you! As a side-matter, would you know a way to find out what the value of the constant difference is?
$endgroup$
– Anakhand
Dec 29 '18 at 17:43
1
$begingroup$
@Anakhand Compute the limits at $infty$.
$endgroup$
– egreg
Dec 29 '18 at 17:48
add a comment |
$begingroup$
Whenever you face this problem, you can check the answer by differentiating. If
$$
F(x)=frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C
$$
then
begin{align}
F'(x)
&=frac{2}{3}frac{1}{1+left(dfrac{e^{x} + sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}left(e^x+frac{e^{2x}}{sqrt{e^{2x}-9}}right) \[4px]
&=frac{2}{9+e^{2x}+e^{2x}-9+2e^xsqrt{e^{2x}-9}}
frac{e^x(e^x+sqrt{e^{2x}-9},)}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}
We can try differentiating the second function
$$
G(x)=frac{1}{3}arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$
and we get
begin{align}
G'(x)
&=frac{1}{3}frac{1}{1+left(dfrac{sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{9+e^{2x}-9}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}
Good job in both cases.
You can easily compute the constant difference by the limits at $infty$ (with $C=0$ in both cases):
$$
lim_{xtoinfty}F(x)=frac{2}{3}frac{pi}{2}=frac{pi}{3}
qquad
lim_{xtoinfty}G(x)=frac{1}{3}frac{pi}{2}=frac{pi}{6}
$$
Alternative solution: substitute $sqrt{e^{2x}-9}=3t$, so
$$
x=frac{1}{2}log(9(t^2+1))
$$
and
$$
dx=frac{t}{t^2+1},dt
$$
so the integral becomes
$$
intfrac{1}{t^2+1},dt=arctan t+C=arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$
$endgroup$
$begingroup$
Thank you! As a side-matter, would you know a way to find out what the value of the constant difference is?
$endgroup$
– Anakhand
Dec 29 '18 at 17:43
1
$begingroup$
@Anakhand Compute the limits at $infty$.
$endgroup$
– egreg
Dec 29 '18 at 17:48
add a comment |
$begingroup$
Whenever you face this problem, you can check the answer by differentiating. If
$$
F(x)=frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C
$$
then
begin{align}
F'(x)
&=frac{2}{3}frac{1}{1+left(dfrac{e^{x} + sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}left(e^x+frac{e^{2x}}{sqrt{e^{2x}-9}}right) \[4px]
&=frac{2}{9+e^{2x}+e^{2x}-9+2e^xsqrt{e^{2x}-9}}
frac{e^x(e^x+sqrt{e^{2x}-9},)}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}
We can try differentiating the second function
$$
G(x)=frac{1}{3}arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$
and we get
begin{align}
G'(x)
&=frac{1}{3}frac{1}{1+left(dfrac{sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{9+e^{2x}-9}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}
Good job in both cases.
You can easily compute the constant difference by the limits at $infty$ (with $C=0$ in both cases):
$$
lim_{xtoinfty}F(x)=frac{2}{3}frac{pi}{2}=frac{pi}{3}
qquad
lim_{xtoinfty}G(x)=frac{1}{3}frac{pi}{2}=frac{pi}{6}
$$
Alternative solution: substitute $sqrt{e^{2x}-9}=3t$, so
$$
x=frac{1}{2}log(9(t^2+1))
$$
and
$$
dx=frac{t}{t^2+1},dt
$$
so the integral becomes
$$
intfrac{1}{t^2+1},dt=arctan t+C=arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$
$endgroup$
Whenever you face this problem, you can check the answer by differentiating. If
$$
F(x)=frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C
$$
then
begin{align}
F'(x)
&=frac{2}{3}frac{1}{1+left(dfrac{e^{x} + sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}left(e^x+frac{e^{2x}}{sqrt{e^{2x}-9}}right) \[4px]
&=frac{2}{9+e^{2x}+e^{2x}-9+2e^xsqrt{e^{2x}-9}}
frac{e^x(e^x+sqrt{e^{2x}-9},)}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}
We can try differentiating the second function
$$
G(x)=frac{1}{3}arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$
and we get
begin{align}
G'(x)
&=frac{1}{3}frac{1}{1+left(dfrac{sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{9+e^{2x}-9}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}
Good job in both cases.
You can easily compute the constant difference by the limits at $infty$ (with $C=0$ in both cases):
$$
lim_{xtoinfty}F(x)=frac{2}{3}frac{pi}{2}=frac{pi}{3}
qquad
lim_{xtoinfty}G(x)=frac{1}{3}frac{pi}{2}=frac{pi}{6}
$$
Alternative solution: substitute $sqrt{e^{2x}-9}=3t$, so
$$
x=frac{1}{2}log(9(t^2+1))
$$
and
$$
dx=frac{t}{t^2+1},dt
$$
so the integral becomes
$$
intfrac{1}{t^2+1},dt=arctan t+C=arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$
edited Dec 29 '18 at 18:00
answered Dec 29 '18 at 17:35
egregegreg
180k1485202
180k1485202
$begingroup$
Thank you! As a side-matter, would you know a way to find out what the value of the constant difference is?
$endgroup$
– Anakhand
Dec 29 '18 at 17:43
1
$begingroup$
@Anakhand Compute the limits at $infty$.
$endgroup$
– egreg
Dec 29 '18 at 17:48
add a comment |
$begingroup$
Thank you! As a side-matter, would you know a way to find out what the value of the constant difference is?
$endgroup$
– Anakhand
Dec 29 '18 at 17:43
1
$begingroup$
@Anakhand Compute the limits at $infty$.
$endgroup$
– egreg
Dec 29 '18 at 17:48
$begingroup$
Thank you! As a side-matter, would you know a way to find out what the value of the constant difference is?
$endgroup$
– Anakhand
Dec 29 '18 at 17:43
$begingroup$
Thank you! As a side-matter, would you know a way to find out what the value of the constant difference is?
$endgroup$
– Anakhand
Dec 29 '18 at 17:43
1
1
$begingroup$
@Anakhand Compute the limits at $infty$.
$endgroup$
– egreg
Dec 29 '18 at 17:48
$begingroup$
@Anakhand Compute the limits at $infty$.
$endgroup$
– egreg
Dec 29 '18 at 17:48
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055989%2fequivalence-of-two-antiderivatives-involving-trigonometric-hyperbolic-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Maybe this formula might help: $$arctan x=2 arctan frac{sqrt{1+x^2}-1}{x} $$
$endgroup$
– Yuriy S
Dec 29 '18 at 16:22