Equivalence of two antiderivatives involving trigonometric/hyperbolic functions












1












$begingroup$


I am struggling to see how two antiderivatives of the same function—obtained in two different ways—are equivalent (what I mean by equivalent is that they differ from just a constant), if they even are equivalent.



The function in question is



$$
begin{align}
f colon quad {xinmathbb{R} mid e^{2x} ge 9} &tomathbb{R}\
x &mapsto f(x) = frac{1}{sqrt{e^{2x} - 9}}
end{align},.
$$



Wanting to find $I = displaystyleint f(x)mathrm{d}x$, I proceeded as follows.



$$
int frac{1}{sqrt{e^{2x} - 9}}mathrm{d}x = frac{1}{3} int frac{1}{sqrt{left(dfrac{e^x}{3}right)^2 - 1}}mathrm{d}x,.
$$



Since $left(frac{e^x}{3}right)^2 in[1,+infty]$ and the image of $cosh$ is $[1, +infty)$,
$$exists t in mathbb{R}colonquad left(dfrac{e^x}{3}right)^2 = cosh^2t\
Rightarrow mathrm{d}x = tanh t mathrm{d}t,.$$



Thus,



$$
I = frac{1}{3} int frac{tanh t}{sqrt{cosh^2 t - 1}}mathrm{d}t = frac{1}{3}int mathrm{sech} t mathrm{d}t,.
$$



Here is where the two different ways diverge. The first thing I tried was using the hyperbolic function's definition.



$$
I = frac{1}{3}int frac{2e^t}{e^{2t} + 1} mathrm{d}t,;
qquadtext{let}quad
begin{cases}
u = e^t\
mathrm{d}u = e^tmathrm{d}t
end{cases}\ \
Rightarrow I = frac{2}{3} int frac{1}{u^2 + 1} mathrm{d}u = frac{2}{3} arctan u + C = frac{2}{3} arctan e^t + C = \
= frac{2}{3} arctan e^{text{arccosh} frac{e^x}{3}} + C = frac{2}{3} arctan e^{lnleft(frac{e^x + sqrt{e^{2x}-9}}{3}right)} + C =\
= frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C,.
$$



The alternative solution is



$$
I = frac{1}{3}int mathrm{sech} t mathrm{d}t = frac{1}{3}int frac{cosh t}{cosh^2 t} mathrm{d}t = frac{1}{3}int frac{cosh t}{1 +sinh^2 t} mathrm{d}t =\
= frac{1}{3}arctan left(sinh tright) + C = frac{1}{3}arctan left(sinh left(mathrm{arccosh} frac{e^x}{3}right)right) + C = frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C,.
$$



I don't see any obvious way in which $$frac{2}{3} arctan left(frac{e^x + sqrt{e^{2x}-9}}{3}right) + C$$ and $$frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C$$ are equivalent antiderivatives, although they do seem to be.






Comparison of antiderivatives






Update



Following Yuriy S's suggestion, I tried the following. Let
$$
s = frac{sqrt{e^{2x} - 9}}{3},.
$$

Thus,
$$
arctan s = 2arctan frac{sqrt{1+s^2}-1}{s} = 2arctan frac{sqrt{1+frac{e^{2x}-9}{9}}-1}{frac{sqrt{e^x - 9}}{3}} = 2arctan frac{3e^x-3}{sqrt{e^x - 9}},.
$$



On the other hand, let
$$
r = frac{e^x + sqrt{e^{2x} - 9}}{3},,
$$

so that
$$
frac{1}{r} = frac{3}{e^x + sqrt{e^{2x} - 9}} cdot frac{e^x - sqrt{e^{2x} - 9}}{e^x - sqrt{e^{2x} - 9}} = frac{e^x - sqrt{e^{2x} - 9}}{3},.
$$



I was striving to apply the formula
$$
arctan x + arctan frac{1}{x} = pmfrac{pi}{2}
$$

but I got stuck here.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Maybe this formula might help: $$arctan x=2 arctan frac{sqrt{1+x^2}-1}{x} $$
    $endgroup$
    – Yuriy S
    Dec 29 '18 at 16:22
















1












$begingroup$


I am struggling to see how two antiderivatives of the same function—obtained in two different ways—are equivalent (what I mean by equivalent is that they differ from just a constant), if they even are equivalent.



The function in question is



$$
begin{align}
f colon quad {xinmathbb{R} mid e^{2x} ge 9} &tomathbb{R}\
x &mapsto f(x) = frac{1}{sqrt{e^{2x} - 9}}
end{align},.
$$



Wanting to find $I = displaystyleint f(x)mathrm{d}x$, I proceeded as follows.



$$
int frac{1}{sqrt{e^{2x} - 9}}mathrm{d}x = frac{1}{3} int frac{1}{sqrt{left(dfrac{e^x}{3}right)^2 - 1}}mathrm{d}x,.
$$



Since $left(frac{e^x}{3}right)^2 in[1,+infty]$ and the image of $cosh$ is $[1, +infty)$,
$$exists t in mathbb{R}colonquad left(dfrac{e^x}{3}right)^2 = cosh^2t\
Rightarrow mathrm{d}x = tanh t mathrm{d}t,.$$



Thus,



$$
I = frac{1}{3} int frac{tanh t}{sqrt{cosh^2 t - 1}}mathrm{d}t = frac{1}{3}int mathrm{sech} t mathrm{d}t,.
$$



Here is where the two different ways diverge. The first thing I tried was using the hyperbolic function's definition.



$$
I = frac{1}{3}int frac{2e^t}{e^{2t} + 1} mathrm{d}t,;
qquadtext{let}quad
begin{cases}
u = e^t\
mathrm{d}u = e^tmathrm{d}t
end{cases}\ \
Rightarrow I = frac{2}{3} int frac{1}{u^2 + 1} mathrm{d}u = frac{2}{3} arctan u + C = frac{2}{3} arctan e^t + C = \
= frac{2}{3} arctan e^{text{arccosh} frac{e^x}{3}} + C = frac{2}{3} arctan e^{lnleft(frac{e^x + sqrt{e^{2x}-9}}{3}right)} + C =\
= frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C,.
$$



The alternative solution is



$$
I = frac{1}{3}int mathrm{sech} t mathrm{d}t = frac{1}{3}int frac{cosh t}{cosh^2 t} mathrm{d}t = frac{1}{3}int frac{cosh t}{1 +sinh^2 t} mathrm{d}t =\
= frac{1}{3}arctan left(sinh tright) + C = frac{1}{3}arctan left(sinh left(mathrm{arccosh} frac{e^x}{3}right)right) + C = frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C,.
$$



I don't see any obvious way in which $$frac{2}{3} arctan left(frac{e^x + sqrt{e^{2x}-9}}{3}right) + C$$ and $$frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C$$ are equivalent antiderivatives, although they do seem to be.






Comparison of antiderivatives






Update



Following Yuriy S's suggestion, I tried the following. Let
$$
s = frac{sqrt{e^{2x} - 9}}{3},.
$$

Thus,
$$
arctan s = 2arctan frac{sqrt{1+s^2}-1}{s} = 2arctan frac{sqrt{1+frac{e^{2x}-9}{9}}-1}{frac{sqrt{e^x - 9}}{3}} = 2arctan frac{3e^x-3}{sqrt{e^x - 9}},.
$$



On the other hand, let
$$
r = frac{e^x + sqrt{e^{2x} - 9}}{3},,
$$

so that
$$
frac{1}{r} = frac{3}{e^x + sqrt{e^{2x} - 9}} cdot frac{e^x - sqrt{e^{2x} - 9}}{e^x - sqrt{e^{2x} - 9}} = frac{e^x - sqrt{e^{2x} - 9}}{3},.
$$



I was striving to apply the formula
$$
arctan x + arctan frac{1}{x} = pmfrac{pi}{2}
$$

but I got stuck here.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Maybe this formula might help: $$arctan x=2 arctan frac{sqrt{1+x^2}-1}{x} $$
    $endgroup$
    – Yuriy S
    Dec 29 '18 at 16:22














1












1








1





$begingroup$


I am struggling to see how two antiderivatives of the same function—obtained in two different ways—are equivalent (what I mean by equivalent is that they differ from just a constant), if they even are equivalent.



The function in question is



$$
begin{align}
f colon quad {xinmathbb{R} mid e^{2x} ge 9} &tomathbb{R}\
x &mapsto f(x) = frac{1}{sqrt{e^{2x} - 9}}
end{align},.
$$



Wanting to find $I = displaystyleint f(x)mathrm{d}x$, I proceeded as follows.



$$
int frac{1}{sqrt{e^{2x} - 9}}mathrm{d}x = frac{1}{3} int frac{1}{sqrt{left(dfrac{e^x}{3}right)^2 - 1}}mathrm{d}x,.
$$



Since $left(frac{e^x}{3}right)^2 in[1,+infty]$ and the image of $cosh$ is $[1, +infty)$,
$$exists t in mathbb{R}colonquad left(dfrac{e^x}{3}right)^2 = cosh^2t\
Rightarrow mathrm{d}x = tanh t mathrm{d}t,.$$



Thus,



$$
I = frac{1}{3} int frac{tanh t}{sqrt{cosh^2 t - 1}}mathrm{d}t = frac{1}{3}int mathrm{sech} t mathrm{d}t,.
$$



Here is where the two different ways diverge. The first thing I tried was using the hyperbolic function's definition.



$$
I = frac{1}{3}int frac{2e^t}{e^{2t} + 1} mathrm{d}t,;
qquadtext{let}quad
begin{cases}
u = e^t\
mathrm{d}u = e^tmathrm{d}t
end{cases}\ \
Rightarrow I = frac{2}{3} int frac{1}{u^2 + 1} mathrm{d}u = frac{2}{3} arctan u + C = frac{2}{3} arctan e^t + C = \
= frac{2}{3} arctan e^{text{arccosh} frac{e^x}{3}} + C = frac{2}{3} arctan e^{lnleft(frac{e^x + sqrt{e^{2x}-9}}{3}right)} + C =\
= frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C,.
$$



The alternative solution is



$$
I = frac{1}{3}int mathrm{sech} t mathrm{d}t = frac{1}{3}int frac{cosh t}{cosh^2 t} mathrm{d}t = frac{1}{3}int frac{cosh t}{1 +sinh^2 t} mathrm{d}t =\
= frac{1}{3}arctan left(sinh tright) + C = frac{1}{3}arctan left(sinh left(mathrm{arccosh} frac{e^x}{3}right)right) + C = frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C,.
$$



I don't see any obvious way in which $$frac{2}{3} arctan left(frac{e^x + sqrt{e^{2x}-9}}{3}right) + C$$ and $$frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C$$ are equivalent antiderivatives, although they do seem to be.






Comparison of antiderivatives






Update



Following Yuriy S's suggestion, I tried the following. Let
$$
s = frac{sqrt{e^{2x} - 9}}{3},.
$$

Thus,
$$
arctan s = 2arctan frac{sqrt{1+s^2}-1}{s} = 2arctan frac{sqrt{1+frac{e^{2x}-9}{9}}-1}{frac{sqrt{e^x - 9}}{3}} = 2arctan frac{3e^x-3}{sqrt{e^x - 9}},.
$$



On the other hand, let
$$
r = frac{e^x + sqrt{e^{2x} - 9}}{3},,
$$

so that
$$
frac{1}{r} = frac{3}{e^x + sqrt{e^{2x} - 9}} cdot frac{e^x - sqrt{e^{2x} - 9}}{e^x - sqrt{e^{2x} - 9}} = frac{e^x - sqrt{e^{2x} - 9}}{3},.
$$



I was striving to apply the formula
$$
arctan x + arctan frac{1}{x} = pmfrac{pi}{2}
$$

but I got stuck here.










share|cite|improve this question











$endgroup$




I am struggling to see how two antiderivatives of the same function—obtained in two different ways—are equivalent (what I mean by equivalent is that they differ from just a constant), if they even are equivalent.



The function in question is



$$
begin{align}
f colon quad {xinmathbb{R} mid e^{2x} ge 9} &tomathbb{R}\
x &mapsto f(x) = frac{1}{sqrt{e^{2x} - 9}}
end{align},.
$$



Wanting to find $I = displaystyleint f(x)mathrm{d}x$, I proceeded as follows.



$$
int frac{1}{sqrt{e^{2x} - 9}}mathrm{d}x = frac{1}{3} int frac{1}{sqrt{left(dfrac{e^x}{3}right)^2 - 1}}mathrm{d}x,.
$$



Since $left(frac{e^x}{3}right)^2 in[1,+infty]$ and the image of $cosh$ is $[1, +infty)$,
$$exists t in mathbb{R}colonquad left(dfrac{e^x}{3}right)^2 = cosh^2t\
Rightarrow mathrm{d}x = tanh t mathrm{d}t,.$$



Thus,



$$
I = frac{1}{3} int frac{tanh t}{sqrt{cosh^2 t - 1}}mathrm{d}t = frac{1}{3}int mathrm{sech} t mathrm{d}t,.
$$



Here is where the two different ways diverge. The first thing I tried was using the hyperbolic function's definition.



$$
I = frac{1}{3}int frac{2e^t}{e^{2t} + 1} mathrm{d}t,;
qquadtext{let}quad
begin{cases}
u = e^t\
mathrm{d}u = e^tmathrm{d}t
end{cases}\ \
Rightarrow I = frac{2}{3} int frac{1}{u^2 + 1} mathrm{d}u = frac{2}{3} arctan u + C = frac{2}{3} arctan e^t + C = \
= frac{2}{3} arctan e^{text{arccosh} frac{e^x}{3}} + C = frac{2}{3} arctan e^{lnleft(frac{e^x + sqrt{e^{2x}-9}}{3}right)} + C =\
= frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C,.
$$



The alternative solution is



$$
I = frac{1}{3}int mathrm{sech} t mathrm{d}t = frac{1}{3}int frac{cosh t}{cosh^2 t} mathrm{d}t = frac{1}{3}int frac{cosh t}{1 +sinh^2 t} mathrm{d}t =\
= frac{1}{3}arctan left(sinh tright) + C = frac{1}{3}arctan left(sinh left(mathrm{arccosh} frac{e^x}{3}right)right) + C = frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C,.
$$



I don't see any obvious way in which $$frac{2}{3} arctan left(frac{e^x + sqrt{e^{2x}-9}}{3}right) + C$$ and $$frac{1}{3}arctan frac{sqrt{e^{2x} - 9}}{3} + C$$ are equivalent antiderivatives, although they do seem to be.






Comparison of antiderivatives






Update



Following Yuriy S's suggestion, I tried the following. Let
$$
s = frac{sqrt{e^{2x} - 9}}{3},.
$$

Thus,
$$
arctan s = 2arctan frac{sqrt{1+s^2}-1}{s} = 2arctan frac{sqrt{1+frac{e^{2x}-9}{9}}-1}{frac{sqrt{e^x - 9}}{3}} = 2arctan frac{3e^x-3}{sqrt{e^x - 9}},.
$$



On the other hand, let
$$
r = frac{e^x + sqrt{e^{2x} - 9}}{3},,
$$

so that
$$
frac{1}{r} = frac{3}{e^x + sqrt{e^{2x} - 9}} cdot frac{e^x - sqrt{e^{2x} - 9}}{e^x - sqrt{e^{2x} - 9}} = frac{e^x - sqrt{e^{2x} - 9}}{3},.
$$



I was striving to apply the formula
$$
arctan x + arctan frac{1}{x} = pmfrac{pi}{2}
$$

but I got stuck here.







integration hyperbolic-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 29 '18 at 17:27







Anakhand

















asked Dec 29 '18 at 16:12









AnakhandAnakhand

12311




12311








  • 1




    $begingroup$
    Maybe this formula might help: $$arctan x=2 arctan frac{sqrt{1+x^2}-1}{x} $$
    $endgroup$
    – Yuriy S
    Dec 29 '18 at 16:22














  • 1




    $begingroup$
    Maybe this formula might help: $$arctan x=2 arctan frac{sqrt{1+x^2}-1}{x} $$
    $endgroup$
    – Yuriy S
    Dec 29 '18 at 16:22








1




1




$begingroup$
Maybe this formula might help: $$arctan x=2 arctan frac{sqrt{1+x^2}-1}{x} $$
$endgroup$
– Yuriy S
Dec 29 '18 at 16:22




$begingroup$
Maybe this formula might help: $$arctan x=2 arctan frac{sqrt{1+x^2}-1}{x} $$
$endgroup$
– Yuriy S
Dec 29 '18 at 16:22










1 Answer
1






active

oldest

votes


















1












$begingroup$

Whenever you face this problem, you can check the answer by differentiating. If
$$
F(x)=frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C
$$

then
begin{align}
F'(x)
&=frac{2}{3}frac{1}{1+left(dfrac{e^{x} + sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}left(e^x+frac{e^{2x}}{sqrt{e^{2x}-9}}right) \[4px]
&=frac{2}{9+e^{2x}+e^{2x}-9+2e^xsqrt{e^{2x}-9}}
frac{e^x(e^x+sqrt{e^{2x}-9},)}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}

We can try differentiating the second function
$$
G(x)=frac{1}{3}arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$

and we get
begin{align}
G'(x)
&=frac{1}{3}frac{1}{1+left(dfrac{sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{9+e^{2x}-9}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}



Good job in both cases.



You can easily compute the constant difference by the limits at $infty$ (with $C=0$ in both cases):
$$
lim_{xtoinfty}F(x)=frac{2}{3}frac{pi}{2}=frac{pi}{3}
qquad
lim_{xtoinfty}G(x)=frac{1}{3}frac{pi}{2}=frac{pi}{6}
$$



Alternative solution: substitute $sqrt{e^{2x}-9}=3t$, so
$$
x=frac{1}{2}log(9(t^2+1))
$$

and
$$
dx=frac{t}{t^2+1},dt
$$

so the integral becomes
$$
intfrac{1}{t^2+1},dt=arctan t+C=arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you! As a side-matter, would you know a way to find out what the value of the constant difference is?
    $endgroup$
    – Anakhand
    Dec 29 '18 at 17:43






  • 1




    $begingroup$
    @Anakhand Compute the limits at $infty$.
    $endgroup$
    – egreg
    Dec 29 '18 at 17:48











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055989%2fequivalence-of-two-antiderivatives-involving-trigonometric-hyperbolic-functions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Whenever you face this problem, you can check the answer by differentiating. If
$$
F(x)=frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C
$$

then
begin{align}
F'(x)
&=frac{2}{3}frac{1}{1+left(dfrac{e^{x} + sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}left(e^x+frac{e^{2x}}{sqrt{e^{2x}-9}}right) \[4px]
&=frac{2}{9+e^{2x}+e^{2x}-9+2e^xsqrt{e^{2x}-9}}
frac{e^x(e^x+sqrt{e^{2x}-9},)}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}

We can try differentiating the second function
$$
G(x)=frac{1}{3}arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$

and we get
begin{align}
G'(x)
&=frac{1}{3}frac{1}{1+left(dfrac{sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{9+e^{2x}-9}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}



Good job in both cases.



You can easily compute the constant difference by the limits at $infty$ (with $C=0$ in both cases):
$$
lim_{xtoinfty}F(x)=frac{2}{3}frac{pi}{2}=frac{pi}{3}
qquad
lim_{xtoinfty}G(x)=frac{1}{3}frac{pi}{2}=frac{pi}{6}
$$



Alternative solution: substitute $sqrt{e^{2x}-9}=3t$, so
$$
x=frac{1}{2}log(9(t^2+1))
$$

and
$$
dx=frac{t}{t^2+1},dt
$$

so the integral becomes
$$
intfrac{1}{t^2+1},dt=arctan t+C=arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you! As a side-matter, would you know a way to find out what the value of the constant difference is?
    $endgroup$
    – Anakhand
    Dec 29 '18 at 17:43






  • 1




    $begingroup$
    @Anakhand Compute the limits at $infty$.
    $endgroup$
    – egreg
    Dec 29 '18 at 17:48
















1












$begingroup$

Whenever you face this problem, you can check the answer by differentiating. If
$$
F(x)=frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C
$$

then
begin{align}
F'(x)
&=frac{2}{3}frac{1}{1+left(dfrac{e^{x} + sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}left(e^x+frac{e^{2x}}{sqrt{e^{2x}-9}}right) \[4px]
&=frac{2}{9+e^{2x}+e^{2x}-9+2e^xsqrt{e^{2x}-9}}
frac{e^x(e^x+sqrt{e^{2x}-9},)}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}

We can try differentiating the second function
$$
G(x)=frac{1}{3}arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$

and we get
begin{align}
G'(x)
&=frac{1}{3}frac{1}{1+left(dfrac{sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{9+e^{2x}-9}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}



Good job in both cases.



You can easily compute the constant difference by the limits at $infty$ (with $C=0$ in both cases):
$$
lim_{xtoinfty}F(x)=frac{2}{3}frac{pi}{2}=frac{pi}{3}
qquad
lim_{xtoinfty}G(x)=frac{1}{3}frac{pi}{2}=frac{pi}{6}
$$



Alternative solution: substitute $sqrt{e^{2x}-9}=3t$, so
$$
x=frac{1}{2}log(9(t^2+1))
$$

and
$$
dx=frac{t}{t^2+1},dt
$$

so the integral becomes
$$
intfrac{1}{t^2+1},dt=arctan t+C=arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you! As a side-matter, would you know a way to find out what the value of the constant difference is?
    $endgroup$
    – Anakhand
    Dec 29 '18 at 17:43






  • 1




    $begingroup$
    @Anakhand Compute the limits at $infty$.
    $endgroup$
    – egreg
    Dec 29 '18 at 17:48














1












1








1





$begingroup$

Whenever you face this problem, you can check the answer by differentiating. If
$$
F(x)=frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C
$$

then
begin{align}
F'(x)
&=frac{2}{3}frac{1}{1+left(dfrac{e^{x} + sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}left(e^x+frac{e^{2x}}{sqrt{e^{2x}-9}}right) \[4px]
&=frac{2}{9+e^{2x}+e^{2x}-9+2e^xsqrt{e^{2x}-9}}
frac{e^x(e^x+sqrt{e^{2x}-9},)}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}

We can try differentiating the second function
$$
G(x)=frac{1}{3}arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$

and we get
begin{align}
G'(x)
&=frac{1}{3}frac{1}{1+left(dfrac{sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{9+e^{2x}-9}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}



Good job in both cases.



You can easily compute the constant difference by the limits at $infty$ (with $C=0$ in both cases):
$$
lim_{xtoinfty}F(x)=frac{2}{3}frac{pi}{2}=frac{pi}{3}
qquad
lim_{xtoinfty}G(x)=frac{1}{3}frac{pi}{2}=frac{pi}{6}
$$



Alternative solution: substitute $sqrt{e^{2x}-9}=3t$, so
$$
x=frac{1}{2}log(9(t^2+1))
$$

and
$$
dx=frac{t}{t^2+1},dt
$$

so the integral becomes
$$
intfrac{1}{t^2+1},dt=arctan t+C=arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$






share|cite|improve this answer











$endgroup$



Whenever you face this problem, you can check the answer by differentiating. If
$$
F(x)=frac{2}{3} arctan left(frac{e^{x} + sqrt{e^{2x}-9}}{3}right) + C
$$

then
begin{align}
F'(x)
&=frac{2}{3}frac{1}{1+left(dfrac{e^{x} + sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}left(e^x+frac{e^{2x}}{sqrt{e^{2x}-9}}right) \[4px]
&=frac{2}{9+e^{2x}+e^{2x}-9+2e^xsqrt{e^{2x}-9}}
frac{e^x(e^x+sqrt{e^{2x}-9},)}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}

We can try differentiating the second function
$$
G(x)=frac{1}{3}arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$

and we get
begin{align}
G'(x)
&=frac{1}{3}frac{1}{1+left(dfrac{sqrt{e^{2x}-9}}{3}right)^2}
frac{1}{3}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{9+e^{2x}-9}frac{e^{2x}}{sqrt{e^{2x}-9}} \[4px]
&=frac{1}{sqrt{e^{2x}-9}}
end{align}



Good job in both cases.



You can easily compute the constant difference by the limits at $infty$ (with $C=0$ in both cases):
$$
lim_{xtoinfty}F(x)=frac{2}{3}frac{pi}{2}=frac{pi}{3}
qquad
lim_{xtoinfty}G(x)=frac{1}{3}frac{pi}{2}=frac{pi}{6}
$$



Alternative solution: substitute $sqrt{e^{2x}-9}=3t$, so
$$
x=frac{1}{2}log(9(t^2+1))
$$

and
$$
dx=frac{t}{t^2+1},dt
$$

so the integral becomes
$$
intfrac{1}{t^2+1},dt=arctan t+C=arctanfrac{sqrt{e^{2x}-9}}{3}+C
$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 29 '18 at 18:00

























answered Dec 29 '18 at 17:35









egregegreg

180k1485202




180k1485202












  • $begingroup$
    Thank you! As a side-matter, would you know a way to find out what the value of the constant difference is?
    $endgroup$
    – Anakhand
    Dec 29 '18 at 17:43






  • 1




    $begingroup$
    @Anakhand Compute the limits at $infty$.
    $endgroup$
    – egreg
    Dec 29 '18 at 17:48


















  • $begingroup$
    Thank you! As a side-matter, would you know a way to find out what the value of the constant difference is?
    $endgroup$
    – Anakhand
    Dec 29 '18 at 17:43






  • 1




    $begingroup$
    @Anakhand Compute the limits at $infty$.
    $endgroup$
    – egreg
    Dec 29 '18 at 17:48
















$begingroup$
Thank you! As a side-matter, would you know a way to find out what the value of the constant difference is?
$endgroup$
– Anakhand
Dec 29 '18 at 17:43




$begingroup$
Thank you! As a side-matter, would you know a way to find out what the value of the constant difference is?
$endgroup$
– Anakhand
Dec 29 '18 at 17:43




1




1




$begingroup$
@Anakhand Compute the limits at $infty$.
$endgroup$
– egreg
Dec 29 '18 at 17:48




$begingroup$
@Anakhand Compute the limits at $infty$.
$endgroup$
– egreg
Dec 29 '18 at 17:48


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055989%2fequivalence-of-two-antiderivatives-involving-trigonometric-hyperbolic-functions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅