Prove a min function defined in the domain of another continuous function is continuous












0












$begingroup$


Assume a min real function is defined below:



$$
f(x)=minlimits_{xleq yleq h(x)}g(y)
$$



$g(x)$ is continuous. $xgeq 0$, $h(x)=ax+b$, $ageq 1, bgeq 0$. Prove $f(x)$ is continuous.





This is a problem I recently encountered when reading a paper. There may be several scenarios regarding the location of $y^ast$ ($g(y^ast)=minlimits_{xleq yleq 2x}g(y)$) in the domain $[x-delta, 2x+2delta]$. And we may prove the continuity by discussing the different scenarios. My proof is below:





$textit{Proof}.$



We must prove that for any $epsilon>0$, there exists $delta>0$, such that when $|x-x_0|<delta$,



$$|f(x)-f(x_0)|<epsilon$$



Because $g(x)$ is continous, for any $epsilon_1>0$, there exits $delta_1$, when $|x-x_0|<delta_1$,



$$|g(x)-g(x_0)|<epsilon_1tag{1}$$





$g(x)$ is also continous on $x=h(x_0)$. There exists $delta_2$, when $|h(x)-h(x_0)|<delta_2$,



$$|g(h(x))-g(h(x_0))|<epsilon_2tag{2}$$



For any two number $x_1$, $x_2$ in the domain $[x_0-delta, x_0+delta]$, let $deltaleq delta_1$, we can get



$$
begin{aligned}
|g(x_1)-g(x_2)|&=|g(x_1)-g(x_0)+g(x_0)-g(x_2)|\
&leq |g(x_1)-g(x_0)|+|g(x_0)-g(x_2)|<2epsilon_1
end{aligned}tag{3}
$$





For any two number $x_1$, $x_2$ in the domain $[x_0-delta, x_0+delta]$, because $h(x)=ax+b$,



$$
begin{aligned}
a(x_0-delta) +bleq h(x_1)leq a(x_0+delta)+b\
a(x_0-delta) +bleq h(x_2)leq a(x_0+delta)+b
end{aligned}
$$



When $deltaleq delta_2$, then $h(x_1), h(x_2)in[h(x_0)-delta_2, h(x_0)+delta_2]$, by Eq. (2), we can get



$$
begin{aligned}
|g(h(x_1))-g(h(x_2))|&=|g(h(x_1))-g(h(x_0))+g(h(x_0))-g(h(x_2))|\
&leq |g(h(x_1))-g(h(x_0))|+|g(h(x_0))-g(h(x_2))|<2epsilon_2
end{aligned}tag{4}
$$





Assume
$$g(y^ast_{0})=minlimits_{x_0leq yleq h(x_0)}g(y)$$



$$g(y^ast_{Delta})=minlimits_{x_0-deltaleq yleq h(x_0+delta)}g(y)$$



For any $xin [x_0-delta, x_0+delta]$,



$$g(y^ast_{x})=minlimits_{xleq yleq h(x)}g(y)$$



Apparently, $g(y^ast_{Delta})leq g(y^ast_{x})$, $g(y^ast_{Delta})leq g(y^ast_0)$.



And $f(x)=g(y^ast_x)$, $f(x_0)=g(y^ast_0)$.



So,



$$
begin{aligned}
|f(x)-f(x_0)|&=|g(y^ast_x)-g(y^ast_0)| \
&= |g(y^ast_x)-g(y^ast_Delta)+g(y^ast_Delta)-g(y^ast_0)|\
&leq |g(y^ast_x)-g(y^ast_Delta)|+|g(y^ast_0)-g(y^ast_Delta)|
end{aligned}tag{5}
$$



According the location of $y^ast_Delta$, there are three cases possible for $| g(y^ast_x)-g(y^ast_Delta) |$ :



(a). $y^ast_Delta= y^ast_x$, if $y^ast_Deltain [x, h(x)]$.



In this case, $| g(y^ast_x)-g(y^ast_Delta) |=0$.



(b). $y^ast_Deltain [x-delta, x]subset [x_0-delta, x_0+delta]$.



In this case, let $deltaleq delta_1$, $| g(y^ast_x)-g(y^ast_Delta) |leq | g(x)-g(y^ast_Delta) |<2epsilon_1$. (because of Eq. (3))



(c). $y^ast_Deltain [h(x), h(x_0+delta)]subset [h(x_0-delta), h(x_0+delta)]$.





In this case, let $deltaleq delta_2$,





$| g(y^ast_x)-g(y^ast_Delta) |leq | g(h(x))-g(y^ast_Delta) |<2epsilon_2$ (according to Eq. (4)).



Therefore, from the three cases, when $deltaleqmin{delta_1, delta_2}$, we can get



$$| g(y^ast_x)-g(y^ast_Delta) |<max{2epsilon_1, 2epsilon_2}$$



Because $g(y^ast_0)$ is a special situation of $g(y^ast_x)$ when $x=x_0$, there is also



$$|g(y^ast_0)-g(y^ast_Delta)|<max{2epsilon_1, 2epsilon_2}$$



Eq. (6) can be written to be:



$$|f(x)-f(x_0)|<2max{2epsilon_1, 2epsilon_2}$$



Let $max{epsilon_1, epsilon_2}=epsilon$, we can get $|f(x)-f(x_0)|<epsilon$. The continuity of $f(x)$ is proved.
$$hspace{300pt}Box$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Thanks for the comments. I have edited this question. Is it qualified now?
    $endgroup$
    – zhen chen
    Jan 10 at 13:48






  • 3




    $begingroup$
    Not really. Where is the “include your work and thoughts on the problem” part?
    $endgroup$
    – José Carlos Santos
    Jan 10 at 13:57










  • $begingroup$
    f(0) = g(0). What is f(-1)?
    $endgroup$
    – William Elliot
    Jan 11 at 2:58










  • $begingroup$
    I have edited the problem, now the function is defined only for the positive domain.
    $endgroup$
    – zhen chen
    Jan 11 at 6:53










  • $begingroup$
    I found my question is very similar to this one: link, the author provide a version of proof.
    $endgroup$
    – zhen chen
    Jan 11 at 12:38


















0












$begingroup$


Assume a min real function is defined below:



$$
f(x)=minlimits_{xleq yleq h(x)}g(y)
$$



$g(x)$ is continuous. $xgeq 0$, $h(x)=ax+b$, $ageq 1, bgeq 0$. Prove $f(x)$ is continuous.





This is a problem I recently encountered when reading a paper. There may be several scenarios regarding the location of $y^ast$ ($g(y^ast)=minlimits_{xleq yleq 2x}g(y)$) in the domain $[x-delta, 2x+2delta]$. And we may prove the continuity by discussing the different scenarios. My proof is below:





$textit{Proof}.$



We must prove that for any $epsilon>0$, there exists $delta>0$, such that when $|x-x_0|<delta$,



$$|f(x)-f(x_0)|<epsilon$$



Because $g(x)$ is continous, for any $epsilon_1>0$, there exits $delta_1$, when $|x-x_0|<delta_1$,



$$|g(x)-g(x_0)|<epsilon_1tag{1}$$





$g(x)$ is also continous on $x=h(x_0)$. There exists $delta_2$, when $|h(x)-h(x_0)|<delta_2$,



$$|g(h(x))-g(h(x_0))|<epsilon_2tag{2}$$



For any two number $x_1$, $x_2$ in the domain $[x_0-delta, x_0+delta]$, let $deltaleq delta_1$, we can get



$$
begin{aligned}
|g(x_1)-g(x_2)|&=|g(x_1)-g(x_0)+g(x_0)-g(x_2)|\
&leq |g(x_1)-g(x_0)|+|g(x_0)-g(x_2)|<2epsilon_1
end{aligned}tag{3}
$$





For any two number $x_1$, $x_2$ in the domain $[x_0-delta, x_0+delta]$, because $h(x)=ax+b$,



$$
begin{aligned}
a(x_0-delta) +bleq h(x_1)leq a(x_0+delta)+b\
a(x_0-delta) +bleq h(x_2)leq a(x_0+delta)+b
end{aligned}
$$



When $deltaleq delta_2$, then $h(x_1), h(x_2)in[h(x_0)-delta_2, h(x_0)+delta_2]$, by Eq. (2), we can get



$$
begin{aligned}
|g(h(x_1))-g(h(x_2))|&=|g(h(x_1))-g(h(x_0))+g(h(x_0))-g(h(x_2))|\
&leq |g(h(x_1))-g(h(x_0))|+|g(h(x_0))-g(h(x_2))|<2epsilon_2
end{aligned}tag{4}
$$





Assume
$$g(y^ast_{0})=minlimits_{x_0leq yleq h(x_0)}g(y)$$



$$g(y^ast_{Delta})=minlimits_{x_0-deltaleq yleq h(x_0+delta)}g(y)$$



For any $xin [x_0-delta, x_0+delta]$,



$$g(y^ast_{x})=minlimits_{xleq yleq h(x)}g(y)$$



Apparently, $g(y^ast_{Delta})leq g(y^ast_{x})$, $g(y^ast_{Delta})leq g(y^ast_0)$.



And $f(x)=g(y^ast_x)$, $f(x_0)=g(y^ast_0)$.



So,



$$
begin{aligned}
|f(x)-f(x_0)|&=|g(y^ast_x)-g(y^ast_0)| \
&= |g(y^ast_x)-g(y^ast_Delta)+g(y^ast_Delta)-g(y^ast_0)|\
&leq |g(y^ast_x)-g(y^ast_Delta)|+|g(y^ast_0)-g(y^ast_Delta)|
end{aligned}tag{5}
$$



According the location of $y^ast_Delta$, there are three cases possible for $| g(y^ast_x)-g(y^ast_Delta) |$ :



(a). $y^ast_Delta= y^ast_x$, if $y^ast_Deltain [x, h(x)]$.



In this case, $| g(y^ast_x)-g(y^ast_Delta) |=0$.



(b). $y^ast_Deltain [x-delta, x]subset [x_0-delta, x_0+delta]$.



In this case, let $deltaleq delta_1$, $| g(y^ast_x)-g(y^ast_Delta) |leq | g(x)-g(y^ast_Delta) |<2epsilon_1$. (because of Eq. (3))



(c). $y^ast_Deltain [h(x), h(x_0+delta)]subset [h(x_0-delta), h(x_0+delta)]$.





In this case, let $deltaleq delta_2$,





$| g(y^ast_x)-g(y^ast_Delta) |leq | g(h(x))-g(y^ast_Delta) |<2epsilon_2$ (according to Eq. (4)).



Therefore, from the three cases, when $deltaleqmin{delta_1, delta_2}$, we can get



$$| g(y^ast_x)-g(y^ast_Delta) |<max{2epsilon_1, 2epsilon_2}$$



Because $g(y^ast_0)$ is a special situation of $g(y^ast_x)$ when $x=x_0$, there is also



$$|g(y^ast_0)-g(y^ast_Delta)|<max{2epsilon_1, 2epsilon_2}$$



Eq. (6) can be written to be:



$$|f(x)-f(x_0)|<2max{2epsilon_1, 2epsilon_2}$$



Let $max{epsilon_1, epsilon_2}=epsilon$, we can get $|f(x)-f(x_0)|<epsilon$. The continuity of $f(x)$ is proved.
$$hspace{300pt}Box$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Thanks for the comments. I have edited this question. Is it qualified now?
    $endgroup$
    – zhen chen
    Jan 10 at 13:48






  • 3




    $begingroup$
    Not really. Where is the “include your work and thoughts on the problem” part?
    $endgroup$
    – José Carlos Santos
    Jan 10 at 13:57










  • $begingroup$
    f(0) = g(0). What is f(-1)?
    $endgroup$
    – William Elliot
    Jan 11 at 2:58










  • $begingroup$
    I have edited the problem, now the function is defined only for the positive domain.
    $endgroup$
    – zhen chen
    Jan 11 at 6:53










  • $begingroup$
    I found my question is very similar to this one: link, the author provide a version of proof.
    $endgroup$
    – zhen chen
    Jan 11 at 12:38
















0












0








0


1



$begingroup$


Assume a min real function is defined below:



$$
f(x)=minlimits_{xleq yleq h(x)}g(y)
$$



$g(x)$ is continuous. $xgeq 0$, $h(x)=ax+b$, $ageq 1, bgeq 0$. Prove $f(x)$ is continuous.





This is a problem I recently encountered when reading a paper. There may be several scenarios regarding the location of $y^ast$ ($g(y^ast)=minlimits_{xleq yleq 2x}g(y)$) in the domain $[x-delta, 2x+2delta]$. And we may prove the continuity by discussing the different scenarios. My proof is below:





$textit{Proof}.$



We must prove that for any $epsilon>0$, there exists $delta>0$, such that when $|x-x_0|<delta$,



$$|f(x)-f(x_0)|<epsilon$$



Because $g(x)$ is continous, for any $epsilon_1>0$, there exits $delta_1$, when $|x-x_0|<delta_1$,



$$|g(x)-g(x_0)|<epsilon_1tag{1}$$





$g(x)$ is also continous on $x=h(x_0)$. There exists $delta_2$, when $|h(x)-h(x_0)|<delta_2$,



$$|g(h(x))-g(h(x_0))|<epsilon_2tag{2}$$



For any two number $x_1$, $x_2$ in the domain $[x_0-delta, x_0+delta]$, let $deltaleq delta_1$, we can get



$$
begin{aligned}
|g(x_1)-g(x_2)|&=|g(x_1)-g(x_0)+g(x_0)-g(x_2)|\
&leq |g(x_1)-g(x_0)|+|g(x_0)-g(x_2)|<2epsilon_1
end{aligned}tag{3}
$$





For any two number $x_1$, $x_2$ in the domain $[x_0-delta, x_0+delta]$, because $h(x)=ax+b$,



$$
begin{aligned}
a(x_0-delta) +bleq h(x_1)leq a(x_0+delta)+b\
a(x_0-delta) +bleq h(x_2)leq a(x_0+delta)+b
end{aligned}
$$



When $deltaleq delta_2$, then $h(x_1), h(x_2)in[h(x_0)-delta_2, h(x_0)+delta_2]$, by Eq. (2), we can get



$$
begin{aligned}
|g(h(x_1))-g(h(x_2))|&=|g(h(x_1))-g(h(x_0))+g(h(x_0))-g(h(x_2))|\
&leq |g(h(x_1))-g(h(x_0))|+|g(h(x_0))-g(h(x_2))|<2epsilon_2
end{aligned}tag{4}
$$





Assume
$$g(y^ast_{0})=minlimits_{x_0leq yleq h(x_0)}g(y)$$



$$g(y^ast_{Delta})=minlimits_{x_0-deltaleq yleq h(x_0+delta)}g(y)$$



For any $xin [x_0-delta, x_0+delta]$,



$$g(y^ast_{x})=minlimits_{xleq yleq h(x)}g(y)$$



Apparently, $g(y^ast_{Delta})leq g(y^ast_{x})$, $g(y^ast_{Delta})leq g(y^ast_0)$.



And $f(x)=g(y^ast_x)$, $f(x_0)=g(y^ast_0)$.



So,



$$
begin{aligned}
|f(x)-f(x_0)|&=|g(y^ast_x)-g(y^ast_0)| \
&= |g(y^ast_x)-g(y^ast_Delta)+g(y^ast_Delta)-g(y^ast_0)|\
&leq |g(y^ast_x)-g(y^ast_Delta)|+|g(y^ast_0)-g(y^ast_Delta)|
end{aligned}tag{5}
$$



According the location of $y^ast_Delta$, there are three cases possible for $| g(y^ast_x)-g(y^ast_Delta) |$ :



(a). $y^ast_Delta= y^ast_x$, if $y^ast_Deltain [x, h(x)]$.



In this case, $| g(y^ast_x)-g(y^ast_Delta) |=0$.



(b). $y^ast_Deltain [x-delta, x]subset [x_0-delta, x_0+delta]$.



In this case, let $deltaleq delta_1$, $| g(y^ast_x)-g(y^ast_Delta) |leq | g(x)-g(y^ast_Delta) |<2epsilon_1$. (because of Eq. (3))



(c). $y^ast_Deltain [h(x), h(x_0+delta)]subset [h(x_0-delta), h(x_0+delta)]$.





In this case, let $deltaleq delta_2$,





$| g(y^ast_x)-g(y^ast_Delta) |leq | g(h(x))-g(y^ast_Delta) |<2epsilon_2$ (according to Eq. (4)).



Therefore, from the three cases, when $deltaleqmin{delta_1, delta_2}$, we can get



$$| g(y^ast_x)-g(y^ast_Delta) |<max{2epsilon_1, 2epsilon_2}$$



Because $g(y^ast_0)$ is a special situation of $g(y^ast_x)$ when $x=x_0$, there is also



$$|g(y^ast_0)-g(y^ast_Delta)|<max{2epsilon_1, 2epsilon_2}$$



Eq. (6) can be written to be:



$$|f(x)-f(x_0)|<2max{2epsilon_1, 2epsilon_2}$$



Let $max{epsilon_1, epsilon_2}=epsilon$, we can get $|f(x)-f(x_0)|<epsilon$. The continuity of $f(x)$ is proved.
$$hspace{300pt}Box$$










share|cite|improve this question











$endgroup$




Assume a min real function is defined below:



$$
f(x)=minlimits_{xleq yleq h(x)}g(y)
$$



$g(x)$ is continuous. $xgeq 0$, $h(x)=ax+b$, $ageq 1, bgeq 0$. Prove $f(x)$ is continuous.





This is a problem I recently encountered when reading a paper. There may be several scenarios regarding the location of $y^ast$ ($g(y^ast)=minlimits_{xleq yleq 2x}g(y)$) in the domain $[x-delta, 2x+2delta]$. And we may prove the continuity by discussing the different scenarios. My proof is below:





$textit{Proof}.$



We must prove that for any $epsilon>0$, there exists $delta>0$, such that when $|x-x_0|<delta$,



$$|f(x)-f(x_0)|<epsilon$$



Because $g(x)$ is continous, for any $epsilon_1>0$, there exits $delta_1$, when $|x-x_0|<delta_1$,



$$|g(x)-g(x_0)|<epsilon_1tag{1}$$





$g(x)$ is also continous on $x=h(x_0)$. There exists $delta_2$, when $|h(x)-h(x_0)|<delta_2$,



$$|g(h(x))-g(h(x_0))|<epsilon_2tag{2}$$



For any two number $x_1$, $x_2$ in the domain $[x_0-delta, x_0+delta]$, let $deltaleq delta_1$, we can get



$$
begin{aligned}
|g(x_1)-g(x_2)|&=|g(x_1)-g(x_0)+g(x_0)-g(x_2)|\
&leq |g(x_1)-g(x_0)|+|g(x_0)-g(x_2)|<2epsilon_1
end{aligned}tag{3}
$$





For any two number $x_1$, $x_2$ in the domain $[x_0-delta, x_0+delta]$, because $h(x)=ax+b$,



$$
begin{aligned}
a(x_0-delta) +bleq h(x_1)leq a(x_0+delta)+b\
a(x_0-delta) +bleq h(x_2)leq a(x_0+delta)+b
end{aligned}
$$



When $deltaleq delta_2$, then $h(x_1), h(x_2)in[h(x_0)-delta_2, h(x_0)+delta_2]$, by Eq. (2), we can get



$$
begin{aligned}
|g(h(x_1))-g(h(x_2))|&=|g(h(x_1))-g(h(x_0))+g(h(x_0))-g(h(x_2))|\
&leq |g(h(x_1))-g(h(x_0))|+|g(h(x_0))-g(h(x_2))|<2epsilon_2
end{aligned}tag{4}
$$





Assume
$$g(y^ast_{0})=minlimits_{x_0leq yleq h(x_0)}g(y)$$



$$g(y^ast_{Delta})=minlimits_{x_0-deltaleq yleq h(x_0+delta)}g(y)$$



For any $xin [x_0-delta, x_0+delta]$,



$$g(y^ast_{x})=minlimits_{xleq yleq h(x)}g(y)$$



Apparently, $g(y^ast_{Delta})leq g(y^ast_{x})$, $g(y^ast_{Delta})leq g(y^ast_0)$.



And $f(x)=g(y^ast_x)$, $f(x_0)=g(y^ast_0)$.



So,



$$
begin{aligned}
|f(x)-f(x_0)|&=|g(y^ast_x)-g(y^ast_0)| \
&= |g(y^ast_x)-g(y^ast_Delta)+g(y^ast_Delta)-g(y^ast_0)|\
&leq |g(y^ast_x)-g(y^ast_Delta)|+|g(y^ast_0)-g(y^ast_Delta)|
end{aligned}tag{5}
$$



According the location of $y^ast_Delta$, there are three cases possible for $| g(y^ast_x)-g(y^ast_Delta) |$ :



(a). $y^ast_Delta= y^ast_x$, if $y^ast_Deltain [x, h(x)]$.



In this case, $| g(y^ast_x)-g(y^ast_Delta) |=0$.



(b). $y^ast_Deltain [x-delta, x]subset [x_0-delta, x_0+delta]$.



In this case, let $deltaleq delta_1$, $| g(y^ast_x)-g(y^ast_Delta) |leq | g(x)-g(y^ast_Delta) |<2epsilon_1$. (because of Eq. (3))



(c). $y^ast_Deltain [h(x), h(x_0+delta)]subset [h(x_0-delta), h(x_0+delta)]$.





In this case, let $deltaleq delta_2$,





$| g(y^ast_x)-g(y^ast_Delta) |leq | g(h(x))-g(y^ast_Delta) |<2epsilon_2$ (according to Eq. (4)).



Therefore, from the three cases, when $deltaleqmin{delta_1, delta_2}$, we can get



$$| g(y^ast_x)-g(y^ast_Delta) |<max{2epsilon_1, 2epsilon_2}$$



Because $g(y^ast_0)$ is a special situation of $g(y^ast_x)$ when $x=x_0$, there is also



$$|g(y^ast_0)-g(y^ast_Delta)|<max{2epsilon_1, 2epsilon_2}$$



Eq. (6) can be written to be:



$$|f(x)-f(x_0)|<2max{2epsilon_1, 2epsilon_2}$$



Let $max{epsilon_1, epsilon_2}=epsilon$, we can get $|f(x)-f(x_0)|<epsilon$. The continuity of $f(x)$ is proved.
$$hspace{300pt}Box$$







real-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 21 at 8:21







zhen chen

















asked Jan 10 at 13:33









zhen chenzhen chen

61




61












  • $begingroup$
    Thanks for the comments. I have edited this question. Is it qualified now?
    $endgroup$
    – zhen chen
    Jan 10 at 13:48






  • 3




    $begingroup$
    Not really. Where is the “include your work and thoughts on the problem” part?
    $endgroup$
    – José Carlos Santos
    Jan 10 at 13:57










  • $begingroup$
    f(0) = g(0). What is f(-1)?
    $endgroup$
    – William Elliot
    Jan 11 at 2:58










  • $begingroup$
    I have edited the problem, now the function is defined only for the positive domain.
    $endgroup$
    – zhen chen
    Jan 11 at 6:53










  • $begingroup$
    I found my question is very similar to this one: link, the author provide a version of proof.
    $endgroup$
    – zhen chen
    Jan 11 at 12:38




















  • $begingroup$
    Thanks for the comments. I have edited this question. Is it qualified now?
    $endgroup$
    – zhen chen
    Jan 10 at 13:48






  • 3




    $begingroup$
    Not really. Where is the “include your work and thoughts on the problem” part?
    $endgroup$
    – José Carlos Santos
    Jan 10 at 13:57










  • $begingroup$
    f(0) = g(0). What is f(-1)?
    $endgroup$
    – William Elliot
    Jan 11 at 2:58










  • $begingroup$
    I have edited the problem, now the function is defined only for the positive domain.
    $endgroup$
    – zhen chen
    Jan 11 at 6:53










  • $begingroup$
    I found my question is very similar to this one: link, the author provide a version of proof.
    $endgroup$
    – zhen chen
    Jan 11 at 12:38


















$begingroup$
Thanks for the comments. I have edited this question. Is it qualified now?
$endgroup$
– zhen chen
Jan 10 at 13:48




$begingroup$
Thanks for the comments. I have edited this question. Is it qualified now?
$endgroup$
– zhen chen
Jan 10 at 13:48




3




3




$begingroup$
Not really. Where is the “include your work and thoughts on the problem” part?
$endgroup$
– José Carlos Santos
Jan 10 at 13:57




$begingroup$
Not really. Where is the “include your work and thoughts on the problem” part?
$endgroup$
– José Carlos Santos
Jan 10 at 13:57












$begingroup$
f(0) = g(0). What is f(-1)?
$endgroup$
– William Elliot
Jan 11 at 2:58




$begingroup$
f(0) = g(0). What is f(-1)?
$endgroup$
– William Elliot
Jan 11 at 2:58












$begingroup$
I have edited the problem, now the function is defined only for the positive domain.
$endgroup$
– zhen chen
Jan 11 at 6:53




$begingroup$
I have edited the problem, now the function is defined only for the positive domain.
$endgroup$
– zhen chen
Jan 11 at 6:53












$begingroup$
I found my question is very similar to this one: link, the author provide a version of proof.
$endgroup$
– zhen chen
Jan 11 at 12:38






$begingroup$
I found my question is very similar to this one: link, the author provide a version of proof.
$endgroup$
– zhen chen
Jan 11 at 12:38












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068642%2fprove-a-min-function-defined-in-the-domain-of-another-continuous-function-is-con%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068642%2fprove-a-min-function-defined-in-the-domain-of-another-continuous-function-is-con%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

File:DeusFollowingSea.jpg