Prove $sum_{k=1}^nfrac{1}{n+k} geq frac{7}{12}$












0












$begingroup$


For all integers $ngeq2$,



$$sum_{k=1}^nfrac{1}{n+k} geq frac{7}{12}$$



How would you prove this by induction?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $frac 1 {n+1+k} < frac 1 {n+k} $. Do you know by how much. Can you prove $sum (frac 1 {n+1+k} - frac 1 {n+k} + frac 1 {2 (n+1)} le 0$?
    $endgroup$
    – fleablood
    Jan 26 '17 at 1:46


















0












$begingroup$


For all integers $ngeq2$,



$$sum_{k=1}^nfrac{1}{n+k} geq frac{7}{12}$$



How would you prove this by induction?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $frac 1 {n+1+k} < frac 1 {n+k} $. Do you know by how much. Can you prove $sum (frac 1 {n+1+k} - frac 1 {n+k} + frac 1 {2 (n+1)} le 0$?
    $endgroup$
    – fleablood
    Jan 26 '17 at 1:46
















0












0








0





$begingroup$


For all integers $ngeq2$,



$$sum_{k=1}^nfrac{1}{n+k} geq frac{7}{12}$$



How would you prove this by induction?










share|cite|improve this question











$endgroup$




For all integers $ngeq2$,



$$sum_{k=1}^nfrac{1}{n+k} geq frac{7}{12}$$



How would you prove this by induction?







inequality proof-explanation harmonic-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 31 '18 at 9:45









Martin Sleziak

44.7k9117272




44.7k9117272










asked Jan 26 '17 at 1:34









IvyIvy

95112




95112












  • $begingroup$
    $frac 1 {n+1+k} < frac 1 {n+k} $. Do you know by how much. Can you prove $sum (frac 1 {n+1+k} - frac 1 {n+k} + frac 1 {2 (n+1)} le 0$?
    $endgroup$
    – fleablood
    Jan 26 '17 at 1:46




















  • $begingroup$
    $frac 1 {n+1+k} < frac 1 {n+k} $. Do you know by how much. Can you prove $sum (frac 1 {n+1+k} - frac 1 {n+k} + frac 1 {2 (n+1)} le 0$?
    $endgroup$
    – fleablood
    Jan 26 '17 at 1:46


















$begingroup$
$frac 1 {n+1+k} < frac 1 {n+k} $. Do you know by how much. Can you prove $sum (frac 1 {n+1+k} - frac 1 {n+k} + frac 1 {2 (n+1)} le 0$?
$endgroup$
– fleablood
Jan 26 '17 at 1:46






$begingroup$
$frac 1 {n+1+k} < frac 1 {n+k} $. Do you know by how much. Can you prove $sum (frac 1 {n+1+k} - frac 1 {n+k} + frac 1 {2 (n+1)} le 0$?
$endgroup$
– fleablood
Jan 26 '17 at 1:46












3 Answers
3






active

oldest

votes


















3












$begingroup$

$$sum_{k=1}^{n}frac{1}{n+k} = H_{2n}-H_{n}$$
are the terms of an increasing sequence, since
$$ H_{2n+2}-H_{n+1}-H_{2n}+H_n = frac{1}{2n+2}+frac{1}{2n+1}-frac{1}{n+1} = frac{1}{(2n+1)(2n+2)}>0.$$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    I don't see how this helps though?
    $endgroup$
    – Ivy
    Jan 26 '17 at 1:44










  • $begingroup$
    @Ivy: $sum_{k=1}^{2}frac{1}{2+k}=frac{7}{12}$ and I have just proved the next terms are bigger.
    $endgroup$
    – Jack D'Aurizio
    Jan 26 '17 at 1:46



















0












$begingroup$

By induction you can do:



$$sum_{k=1}^{n+1}frac{1}{n+1+k}=sum_{k=1}^nfrac{1}{n+k} -frac{1}{n+1}+frac{1}{2n+1}+frac{1}{2n+2}=\
=sum_{k=1}^nfrac{1}{n+k}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}$$






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    If
    $s_n
    = sum_{k=1}^nfrac{1}{n+k}
    $,
    then



    $begin{array}\
    s_{n+1}
    &= sum_{k=1}^{n+1}dfrac{1}{n+1+k}\
    &= sum_{k=2}^{n+2}dfrac{1}{n+k}\
    &= sum_{k=2}^{n}dfrac{1}{n+k}+dfrac1{2n+1}+dfrac1{2n+2}\
    &= sum_{k=1}^{n}dfrac{1}{n+k}-dfrac1{n+1}+dfrac1{2n+1}+dfrac1{2n+2}\
    &= s_n+dfrac{(2n+1)+(2n+2)-2(2n+1)}{(2n+1)(2n+2)}\
    &= s_n+dfrac{1}{(2n+1)(2n+2)}\
    end{array}
    $



    Therefore
    $s_{n+1} > s_n$,
    so $s_n$
    is increasing.



    Therefore,
    if $n > m$,
    $s_n > s_m$.



    Note that
    we can bound $s_n$ because



    $begin{array}\
    s_{n+1}
    &= s_n+dfrac{1}{(2n+1)(2n+2)}\
    &< s_n+dfrac{1}{(2n)(2n+2)}\
    &< s_n+frac14dfrac{1}{n(n+1)}\
    &< s_n+frac14(dfrac1{n}-dfrac1{n+1})\
    end{array}
    $



    so that
    $s_{n+1}-s_n
    < frac14(dfrac1{n}-dfrac1{n+1})
    $.



    Summing,
    $sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
    < sum_{k=1}^{m-1}frac14(dfrac1{n}-dfrac1{n+1})
    $
    or
    $s_{n+m}-s_n
    lt frac14(frac1{n}-frac1{n+m})
    lt frac1{4n}
    $.



    Therefore,
    $lim_{n to infty} s_n$
    exists,
    and,
    if
    $S=lim_{n to infty} s_n$,
    $S < s_n +dfrac1{4n}$.



    We can similarly get a
    lower bound on $s_n$
    and, therefore,
    a lower bound on $S$
    in terms of $n$ and $s_n$.



    (the following is done
    with copy, paste, and edit.)



    $begin{array}\
    s_{n+1}
    &= s_n+dfrac{1}{(2n+1)(2n+2)}\
    &> s_n+dfrac{1}{(2n+2)(2n+4)}\
    &> s_n+frac14dfrac{1}{(n+2)(n+2)}\
    &> s_n+frac14(dfrac1{n+1}-dfrac1{n+2})\
    end{array}
    $



    so that
    $s_{n+1}-s_n
    gt frac14(dfrac1{n+1}-dfrac1{n+2})
    $.



    Summing,
    $sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
    gt sum_{k=1}^{m-1}frac14(dfrac1{n+1}-dfrac1{n+2})
    $
    or
    $s_{n+m}-s_n
    gt frac14(frac1{n+1}-frac1{n+m+1})
    $
    so that
    $S
    =lim_{m to infty}s_{n+m}
    ge s_n+lim_{m to infty}frac14(frac1{n+1}-frac1{n+m+1})
    = s_n+frac1{4n+4}
    $.



    Therefore
    $S ge s_n +dfrac1{4n+4}$.



    Therefore,
    for any $n$,
    $s_n +dfrac1{4n+4}
    le S
    < s_n +dfrac1{4n}$.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2114321%2fprove-sum-k-1n-frac1nk-geq-frac712%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      $$sum_{k=1}^{n}frac{1}{n+k} = H_{2n}-H_{n}$$
      are the terms of an increasing sequence, since
      $$ H_{2n+2}-H_{n+1}-H_{2n}+H_n = frac{1}{2n+2}+frac{1}{2n+1}-frac{1}{n+1} = frac{1}{(2n+1)(2n+2)}>0.$$






      share|cite|improve this answer









      $endgroup$









      • 1




        $begingroup$
        I don't see how this helps though?
        $endgroup$
        – Ivy
        Jan 26 '17 at 1:44










      • $begingroup$
        @Ivy: $sum_{k=1}^{2}frac{1}{2+k}=frac{7}{12}$ and I have just proved the next terms are bigger.
        $endgroup$
        – Jack D'Aurizio
        Jan 26 '17 at 1:46
















      3












      $begingroup$

      $$sum_{k=1}^{n}frac{1}{n+k} = H_{2n}-H_{n}$$
      are the terms of an increasing sequence, since
      $$ H_{2n+2}-H_{n+1}-H_{2n}+H_n = frac{1}{2n+2}+frac{1}{2n+1}-frac{1}{n+1} = frac{1}{(2n+1)(2n+2)}>0.$$






      share|cite|improve this answer









      $endgroup$









      • 1




        $begingroup$
        I don't see how this helps though?
        $endgroup$
        – Ivy
        Jan 26 '17 at 1:44










      • $begingroup$
        @Ivy: $sum_{k=1}^{2}frac{1}{2+k}=frac{7}{12}$ and I have just proved the next terms are bigger.
        $endgroup$
        – Jack D'Aurizio
        Jan 26 '17 at 1:46














      3












      3








      3





      $begingroup$

      $$sum_{k=1}^{n}frac{1}{n+k} = H_{2n}-H_{n}$$
      are the terms of an increasing sequence, since
      $$ H_{2n+2}-H_{n+1}-H_{2n}+H_n = frac{1}{2n+2}+frac{1}{2n+1}-frac{1}{n+1} = frac{1}{(2n+1)(2n+2)}>0.$$






      share|cite|improve this answer









      $endgroup$



      $$sum_{k=1}^{n}frac{1}{n+k} = H_{2n}-H_{n}$$
      are the terms of an increasing sequence, since
      $$ H_{2n+2}-H_{n+1}-H_{2n}+H_n = frac{1}{2n+2}+frac{1}{2n+1}-frac{1}{n+1} = frac{1}{(2n+1)(2n+2)}>0.$$







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Jan 26 '17 at 1:39









      Jack D'AurizioJack D'Aurizio

      288k33280660




      288k33280660








      • 1




        $begingroup$
        I don't see how this helps though?
        $endgroup$
        – Ivy
        Jan 26 '17 at 1:44










      • $begingroup$
        @Ivy: $sum_{k=1}^{2}frac{1}{2+k}=frac{7}{12}$ and I have just proved the next terms are bigger.
        $endgroup$
        – Jack D'Aurizio
        Jan 26 '17 at 1:46














      • 1




        $begingroup$
        I don't see how this helps though?
        $endgroup$
        – Ivy
        Jan 26 '17 at 1:44










      • $begingroup$
        @Ivy: $sum_{k=1}^{2}frac{1}{2+k}=frac{7}{12}$ and I have just proved the next terms are bigger.
        $endgroup$
        – Jack D'Aurizio
        Jan 26 '17 at 1:46








      1




      1




      $begingroup$
      I don't see how this helps though?
      $endgroup$
      – Ivy
      Jan 26 '17 at 1:44




      $begingroup$
      I don't see how this helps though?
      $endgroup$
      – Ivy
      Jan 26 '17 at 1:44












      $begingroup$
      @Ivy: $sum_{k=1}^{2}frac{1}{2+k}=frac{7}{12}$ and I have just proved the next terms are bigger.
      $endgroup$
      – Jack D'Aurizio
      Jan 26 '17 at 1:46




      $begingroup$
      @Ivy: $sum_{k=1}^{2}frac{1}{2+k}=frac{7}{12}$ and I have just proved the next terms are bigger.
      $endgroup$
      – Jack D'Aurizio
      Jan 26 '17 at 1:46











      0












      $begingroup$

      By induction you can do:



      $$sum_{k=1}^{n+1}frac{1}{n+1+k}=sum_{k=1}^nfrac{1}{n+k} -frac{1}{n+1}+frac{1}{2n+1}+frac{1}{2n+2}=\
      =sum_{k=1}^nfrac{1}{n+k}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}$$






      share|cite|improve this answer











      $endgroup$


















        0












        $begingroup$

        By induction you can do:



        $$sum_{k=1}^{n+1}frac{1}{n+1+k}=sum_{k=1}^nfrac{1}{n+k} -frac{1}{n+1}+frac{1}{2n+1}+frac{1}{2n+2}=\
        =sum_{k=1}^nfrac{1}{n+k}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}$$






        share|cite|improve this answer











        $endgroup$
















          0












          0








          0





          $begingroup$

          By induction you can do:



          $$sum_{k=1}^{n+1}frac{1}{n+1+k}=sum_{k=1}^nfrac{1}{n+k} -frac{1}{n+1}+frac{1}{2n+1}+frac{1}{2n+2}=\
          =sum_{k=1}^nfrac{1}{n+k}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}$$






          share|cite|improve this answer











          $endgroup$



          By induction you can do:



          $$sum_{k=1}^{n+1}frac{1}{n+1+k}=sum_{k=1}^nfrac{1}{n+k} -frac{1}{n+1}+frac{1}{2n+1}+frac{1}{2n+2}=\
          =sum_{k=1}^nfrac{1}{n+k}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 26 '17 at 20:04

























          answered Jan 26 '17 at 2:01









          ArnaldoArnaldo

          18.1k42246




          18.1k42246























              0












              $begingroup$

              If
              $s_n
              = sum_{k=1}^nfrac{1}{n+k}
              $,
              then



              $begin{array}\
              s_{n+1}
              &= sum_{k=1}^{n+1}dfrac{1}{n+1+k}\
              &= sum_{k=2}^{n+2}dfrac{1}{n+k}\
              &= sum_{k=2}^{n}dfrac{1}{n+k}+dfrac1{2n+1}+dfrac1{2n+2}\
              &= sum_{k=1}^{n}dfrac{1}{n+k}-dfrac1{n+1}+dfrac1{2n+1}+dfrac1{2n+2}\
              &= s_n+dfrac{(2n+1)+(2n+2)-2(2n+1)}{(2n+1)(2n+2)}\
              &= s_n+dfrac{1}{(2n+1)(2n+2)}\
              end{array}
              $



              Therefore
              $s_{n+1} > s_n$,
              so $s_n$
              is increasing.



              Therefore,
              if $n > m$,
              $s_n > s_m$.



              Note that
              we can bound $s_n$ because



              $begin{array}\
              s_{n+1}
              &= s_n+dfrac{1}{(2n+1)(2n+2)}\
              &< s_n+dfrac{1}{(2n)(2n+2)}\
              &< s_n+frac14dfrac{1}{n(n+1)}\
              &< s_n+frac14(dfrac1{n}-dfrac1{n+1})\
              end{array}
              $



              so that
              $s_{n+1}-s_n
              < frac14(dfrac1{n}-dfrac1{n+1})
              $.



              Summing,
              $sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
              < sum_{k=1}^{m-1}frac14(dfrac1{n}-dfrac1{n+1})
              $
              or
              $s_{n+m}-s_n
              lt frac14(frac1{n}-frac1{n+m})
              lt frac1{4n}
              $.



              Therefore,
              $lim_{n to infty} s_n$
              exists,
              and,
              if
              $S=lim_{n to infty} s_n$,
              $S < s_n +dfrac1{4n}$.



              We can similarly get a
              lower bound on $s_n$
              and, therefore,
              a lower bound on $S$
              in terms of $n$ and $s_n$.



              (the following is done
              with copy, paste, and edit.)



              $begin{array}\
              s_{n+1}
              &= s_n+dfrac{1}{(2n+1)(2n+2)}\
              &> s_n+dfrac{1}{(2n+2)(2n+4)}\
              &> s_n+frac14dfrac{1}{(n+2)(n+2)}\
              &> s_n+frac14(dfrac1{n+1}-dfrac1{n+2})\
              end{array}
              $



              so that
              $s_{n+1}-s_n
              gt frac14(dfrac1{n+1}-dfrac1{n+2})
              $.



              Summing,
              $sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
              gt sum_{k=1}^{m-1}frac14(dfrac1{n+1}-dfrac1{n+2})
              $
              or
              $s_{n+m}-s_n
              gt frac14(frac1{n+1}-frac1{n+m+1})
              $
              so that
              $S
              =lim_{m to infty}s_{n+m}
              ge s_n+lim_{m to infty}frac14(frac1{n+1}-frac1{n+m+1})
              = s_n+frac1{4n+4}
              $.



              Therefore
              $S ge s_n +dfrac1{4n+4}$.



              Therefore,
              for any $n$,
              $s_n +dfrac1{4n+4}
              le S
              < s_n +dfrac1{4n}$.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                If
                $s_n
                = sum_{k=1}^nfrac{1}{n+k}
                $,
                then



                $begin{array}\
                s_{n+1}
                &= sum_{k=1}^{n+1}dfrac{1}{n+1+k}\
                &= sum_{k=2}^{n+2}dfrac{1}{n+k}\
                &= sum_{k=2}^{n}dfrac{1}{n+k}+dfrac1{2n+1}+dfrac1{2n+2}\
                &= sum_{k=1}^{n}dfrac{1}{n+k}-dfrac1{n+1}+dfrac1{2n+1}+dfrac1{2n+2}\
                &= s_n+dfrac{(2n+1)+(2n+2)-2(2n+1)}{(2n+1)(2n+2)}\
                &= s_n+dfrac{1}{(2n+1)(2n+2)}\
                end{array}
                $



                Therefore
                $s_{n+1} > s_n$,
                so $s_n$
                is increasing.



                Therefore,
                if $n > m$,
                $s_n > s_m$.



                Note that
                we can bound $s_n$ because



                $begin{array}\
                s_{n+1}
                &= s_n+dfrac{1}{(2n+1)(2n+2)}\
                &< s_n+dfrac{1}{(2n)(2n+2)}\
                &< s_n+frac14dfrac{1}{n(n+1)}\
                &< s_n+frac14(dfrac1{n}-dfrac1{n+1})\
                end{array}
                $



                so that
                $s_{n+1}-s_n
                < frac14(dfrac1{n}-dfrac1{n+1})
                $.



                Summing,
                $sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
                < sum_{k=1}^{m-1}frac14(dfrac1{n}-dfrac1{n+1})
                $
                or
                $s_{n+m}-s_n
                lt frac14(frac1{n}-frac1{n+m})
                lt frac1{4n}
                $.



                Therefore,
                $lim_{n to infty} s_n$
                exists,
                and,
                if
                $S=lim_{n to infty} s_n$,
                $S < s_n +dfrac1{4n}$.



                We can similarly get a
                lower bound on $s_n$
                and, therefore,
                a lower bound on $S$
                in terms of $n$ and $s_n$.



                (the following is done
                with copy, paste, and edit.)



                $begin{array}\
                s_{n+1}
                &= s_n+dfrac{1}{(2n+1)(2n+2)}\
                &> s_n+dfrac{1}{(2n+2)(2n+4)}\
                &> s_n+frac14dfrac{1}{(n+2)(n+2)}\
                &> s_n+frac14(dfrac1{n+1}-dfrac1{n+2})\
                end{array}
                $



                so that
                $s_{n+1}-s_n
                gt frac14(dfrac1{n+1}-dfrac1{n+2})
                $.



                Summing,
                $sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
                gt sum_{k=1}^{m-1}frac14(dfrac1{n+1}-dfrac1{n+2})
                $
                or
                $s_{n+m}-s_n
                gt frac14(frac1{n+1}-frac1{n+m+1})
                $
                so that
                $S
                =lim_{m to infty}s_{n+m}
                ge s_n+lim_{m to infty}frac14(frac1{n+1}-frac1{n+m+1})
                = s_n+frac1{4n+4}
                $.



                Therefore
                $S ge s_n +dfrac1{4n+4}$.



                Therefore,
                for any $n$,
                $s_n +dfrac1{4n+4}
                le S
                < s_n +dfrac1{4n}$.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  If
                  $s_n
                  = sum_{k=1}^nfrac{1}{n+k}
                  $,
                  then



                  $begin{array}\
                  s_{n+1}
                  &= sum_{k=1}^{n+1}dfrac{1}{n+1+k}\
                  &= sum_{k=2}^{n+2}dfrac{1}{n+k}\
                  &= sum_{k=2}^{n}dfrac{1}{n+k}+dfrac1{2n+1}+dfrac1{2n+2}\
                  &= sum_{k=1}^{n}dfrac{1}{n+k}-dfrac1{n+1}+dfrac1{2n+1}+dfrac1{2n+2}\
                  &= s_n+dfrac{(2n+1)+(2n+2)-2(2n+1)}{(2n+1)(2n+2)}\
                  &= s_n+dfrac{1}{(2n+1)(2n+2)}\
                  end{array}
                  $



                  Therefore
                  $s_{n+1} > s_n$,
                  so $s_n$
                  is increasing.



                  Therefore,
                  if $n > m$,
                  $s_n > s_m$.



                  Note that
                  we can bound $s_n$ because



                  $begin{array}\
                  s_{n+1}
                  &= s_n+dfrac{1}{(2n+1)(2n+2)}\
                  &< s_n+dfrac{1}{(2n)(2n+2)}\
                  &< s_n+frac14dfrac{1}{n(n+1)}\
                  &< s_n+frac14(dfrac1{n}-dfrac1{n+1})\
                  end{array}
                  $



                  so that
                  $s_{n+1}-s_n
                  < frac14(dfrac1{n}-dfrac1{n+1})
                  $.



                  Summing,
                  $sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
                  < sum_{k=1}^{m-1}frac14(dfrac1{n}-dfrac1{n+1})
                  $
                  or
                  $s_{n+m}-s_n
                  lt frac14(frac1{n}-frac1{n+m})
                  lt frac1{4n}
                  $.



                  Therefore,
                  $lim_{n to infty} s_n$
                  exists,
                  and,
                  if
                  $S=lim_{n to infty} s_n$,
                  $S < s_n +dfrac1{4n}$.



                  We can similarly get a
                  lower bound on $s_n$
                  and, therefore,
                  a lower bound on $S$
                  in terms of $n$ and $s_n$.



                  (the following is done
                  with copy, paste, and edit.)



                  $begin{array}\
                  s_{n+1}
                  &= s_n+dfrac{1}{(2n+1)(2n+2)}\
                  &> s_n+dfrac{1}{(2n+2)(2n+4)}\
                  &> s_n+frac14dfrac{1}{(n+2)(n+2)}\
                  &> s_n+frac14(dfrac1{n+1}-dfrac1{n+2})\
                  end{array}
                  $



                  so that
                  $s_{n+1}-s_n
                  gt frac14(dfrac1{n+1}-dfrac1{n+2})
                  $.



                  Summing,
                  $sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
                  gt sum_{k=1}^{m-1}frac14(dfrac1{n+1}-dfrac1{n+2})
                  $
                  or
                  $s_{n+m}-s_n
                  gt frac14(frac1{n+1}-frac1{n+m+1})
                  $
                  so that
                  $S
                  =lim_{m to infty}s_{n+m}
                  ge s_n+lim_{m to infty}frac14(frac1{n+1}-frac1{n+m+1})
                  = s_n+frac1{4n+4}
                  $.



                  Therefore
                  $S ge s_n +dfrac1{4n+4}$.



                  Therefore,
                  for any $n$,
                  $s_n +dfrac1{4n+4}
                  le S
                  < s_n +dfrac1{4n}$.






                  share|cite|improve this answer









                  $endgroup$



                  If
                  $s_n
                  = sum_{k=1}^nfrac{1}{n+k}
                  $,
                  then



                  $begin{array}\
                  s_{n+1}
                  &= sum_{k=1}^{n+1}dfrac{1}{n+1+k}\
                  &= sum_{k=2}^{n+2}dfrac{1}{n+k}\
                  &= sum_{k=2}^{n}dfrac{1}{n+k}+dfrac1{2n+1}+dfrac1{2n+2}\
                  &= sum_{k=1}^{n}dfrac{1}{n+k}-dfrac1{n+1}+dfrac1{2n+1}+dfrac1{2n+2}\
                  &= s_n+dfrac{(2n+1)+(2n+2)-2(2n+1)}{(2n+1)(2n+2)}\
                  &= s_n+dfrac{1}{(2n+1)(2n+2)}\
                  end{array}
                  $



                  Therefore
                  $s_{n+1} > s_n$,
                  so $s_n$
                  is increasing.



                  Therefore,
                  if $n > m$,
                  $s_n > s_m$.



                  Note that
                  we can bound $s_n$ because



                  $begin{array}\
                  s_{n+1}
                  &= s_n+dfrac{1}{(2n+1)(2n+2)}\
                  &< s_n+dfrac{1}{(2n)(2n+2)}\
                  &< s_n+frac14dfrac{1}{n(n+1)}\
                  &< s_n+frac14(dfrac1{n}-dfrac1{n+1})\
                  end{array}
                  $



                  so that
                  $s_{n+1}-s_n
                  < frac14(dfrac1{n}-dfrac1{n+1})
                  $.



                  Summing,
                  $sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
                  < sum_{k=1}^{m-1}frac14(dfrac1{n}-dfrac1{n+1})
                  $
                  or
                  $s_{n+m}-s_n
                  lt frac14(frac1{n}-frac1{n+m})
                  lt frac1{4n}
                  $.



                  Therefore,
                  $lim_{n to infty} s_n$
                  exists,
                  and,
                  if
                  $S=lim_{n to infty} s_n$,
                  $S < s_n +dfrac1{4n}$.



                  We can similarly get a
                  lower bound on $s_n$
                  and, therefore,
                  a lower bound on $S$
                  in terms of $n$ and $s_n$.



                  (the following is done
                  with copy, paste, and edit.)



                  $begin{array}\
                  s_{n+1}
                  &= s_n+dfrac{1}{(2n+1)(2n+2)}\
                  &> s_n+dfrac{1}{(2n+2)(2n+4)}\
                  &> s_n+frac14dfrac{1}{(n+2)(n+2)}\
                  &> s_n+frac14(dfrac1{n+1}-dfrac1{n+2})\
                  end{array}
                  $



                  so that
                  $s_{n+1}-s_n
                  gt frac14(dfrac1{n+1}-dfrac1{n+2})
                  $.



                  Summing,
                  $sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
                  gt sum_{k=1}^{m-1}frac14(dfrac1{n+1}-dfrac1{n+2})
                  $
                  or
                  $s_{n+m}-s_n
                  gt frac14(frac1{n+1}-frac1{n+m+1})
                  $
                  so that
                  $S
                  =lim_{m to infty}s_{n+m}
                  ge s_n+lim_{m to infty}frac14(frac1{n+1}-frac1{n+m+1})
                  = s_n+frac1{4n+4}
                  $.



                  Therefore
                  $S ge s_n +dfrac1{4n+4}$.



                  Therefore,
                  for any $n$,
                  $s_n +dfrac1{4n+4}
                  le S
                  < s_n +dfrac1{4n}$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 26 '17 at 20:45









                  marty cohenmarty cohen

                  73.1k549128




                  73.1k549128






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2114321%2fprove-sum-k-1n-frac1nk-geq-frac712%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Human spaceflight

                      Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                      張江高科駅