Prove $sum_{k=1}^nfrac{1}{n+k} geq frac{7}{12}$
$begingroup$
For all integers $ngeq2$,
$$sum_{k=1}^nfrac{1}{n+k} geq frac{7}{12}$$
How would you prove this by induction?
inequality proof-explanation harmonic-numbers
$endgroup$
add a comment |
$begingroup$
For all integers $ngeq2$,
$$sum_{k=1}^nfrac{1}{n+k} geq frac{7}{12}$$
How would you prove this by induction?
inequality proof-explanation harmonic-numbers
$endgroup$
$begingroup$
$frac 1 {n+1+k} < frac 1 {n+k} $. Do you know by how much. Can you prove $sum (frac 1 {n+1+k} - frac 1 {n+k} + frac 1 {2 (n+1)} le 0$?
$endgroup$
– fleablood
Jan 26 '17 at 1:46
add a comment |
$begingroup$
For all integers $ngeq2$,
$$sum_{k=1}^nfrac{1}{n+k} geq frac{7}{12}$$
How would you prove this by induction?
inequality proof-explanation harmonic-numbers
$endgroup$
For all integers $ngeq2$,
$$sum_{k=1}^nfrac{1}{n+k} geq frac{7}{12}$$
How would you prove this by induction?
inequality proof-explanation harmonic-numbers
inequality proof-explanation harmonic-numbers
edited Dec 31 '18 at 9:45
Martin Sleziak
44.7k9117272
44.7k9117272
asked Jan 26 '17 at 1:34
IvyIvy
95112
95112
$begingroup$
$frac 1 {n+1+k} < frac 1 {n+k} $. Do you know by how much. Can you prove $sum (frac 1 {n+1+k} - frac 1 {n+k} + frac 1 {2 (n+1)} le 0$?
$endgroup$
– fleablood
Jan 26 '17 at 1:46
add a comment |
$begingroup$
$frac 1 {n+1+k} < frac 1 {n+k} $. Do you know by how much. Can you prove $sum (frac 1 {n+1+k} - frac 1 {n+k} + frac 1 {2 (n+1)} le 0$?
$endgroup$
– fleablood
Jan 26 '17 at 1:46
$begingroup$
$frac 1 {n+1+k} < frac 1 {n+k} $. Do you know by how much. Can you prove $sum (frac 1 {n+1+k} - frac 1 {n+k} + frac 1 {2 (n+1)} le 0$?
$endgroup$
– fleablood
Jan 26 '17 at 1:46
$begingroup$
$frac 1 {n+1+k} < frac 1 {n+k} $. Do you know by how much. Can you prove $sum (frac 1 {n+1+k} - frac 1 {n+k} + frac 1 {2 (n+1)} le 0$?
$endgroup$
– fleablood
Jan 26 '17 at 1:46
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$sum_{k=1}^{n}frac{1}{n+k} = H_{2n}-H_{n}$$
are the terms of an increasing sequence, since
$$ H_{2n+2}-H_{n+1}-H_{2n}+H_n = frac{1}{2n+2}+frac{1}{2n+1}-frac{1}{n+1} = frac{1}{(2n+1)(2n+2)}>0.$$
$endgroup$
1
$begingroup$
I don't see how this helps though?
$endgroup$
– Ivy
Jan 26 '17 at 1:44
$begingroup$
@Ivy: $sum_{k=1}^{2}frac{1}{2+k}=frac{7}{12}$ and I have just proved the next terms are bigger.
$endgroup$
– Jack D'Aurizio
Jan 26 '17 at 1:46
add a comment |
$begingroup$
By induction you can do:
$$sum_{k=1}^{n+1}frac{1}{n+1+k}=sum_{k=1}^nfrac{1}{n+k} -frac{1}{n+1}+frac{1}{2n+1}+frac{1}{2n+2}=\
=sum_{k=1}^nfrac{1}{n+k}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}$$
$endgroup$
add a comment |
$begingroup$
If
$s_n
= sum_{k=1}^nfrac{1}{n+k}
$,
then
$begin{array}\
s_{n+1}
&= sum_{k=1}^{n+1}dfrac{1}{n+1+k}\
&= sum_{k=2}^{n+2}dfrac{1}{n+k}\
&= sum_{k=2}^{n}dfrac{1}{n+k}+dfrac1{2n+1}+dfrac1{2n+2}\
&= sum_{k=1}^{n}dfrac{1}{n+k}-dfrac1{n+1}+dfrac1{2n+1}+dfrac1{2n+2}\
&= s_n+dfrac{(2n+1)+(2n+2)-2(2n+1)}{(2n+1)(2n+2)}\
&= s_n+dfrac{1}{(2n+1)(2n+2)}\
end{array}
$
Therefore
$s_{n+1} > s_n$,
so $s_n$
is increasing.
Therefore,
if $n > m$,
$s_n > s_m$.
Note that
we can bound $s_n$ because
$begin{array}\
s_{n+1}
&= s_n+dfrac{1}{(2n+1)(2n+2)}\
&< s_n+dfrac{1}{(2n)(2n+2)}\
&< s_n+frac14dfrac{1}{n(n+1)}\
&< s_n+frac14(dfrac1{n}-dfrac1{n+1})\
end{array}
$
so that
$s_{n+1}-s_n
< frac14(dfrac1{n}-dfrac1{n+1})
$.
Summing,
$sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
< sum_{k=1}^{m-1}frac14(dfrac1{n}-dfrac1{n+1})
$
or
$s_{n+m}-s_n
lt frac14(frac1{n}-frac1{n+m})
lt frac1{4n}
$.
Therefore,
$lim_{n to infty} s_n$
exists,
and,
if
$S=lim_{n to infty} s_n$,
$S < s_n +dfrac1{4n}$.
We can similarly get a
lower bound on $s_n$
and, therefore,
a lower bound on $S$
in terms of $n$ and $s_n$.
(the following is done
with copy, paste, and edit.)
$begin{array}\
s_{n+1}
&= s_n+dfrac{1}{(2n+1)(2n+2)}\
&> s_n+dfrac{1}{(2n+2)(2n+4)}\
&> s_n+frac14dfrac{1}{(n+2)(n+2)}\
&> s_n+frac14(dfrac1{n+1}-dfrac1{n+2})\
end{array}
$
so that
$s_{n+1}-s_n
gt frac14(dfrac1{n+1}-dfrac1{n+2})
$.
Summing,
$sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
gt sum_{k=1}^{m-1}frac14(dfrac1{n+1}-dfrac1{n+2})
$
or
$s_{n+m}-s_n
gt frac14(frac1{n+1}-frac1{n+m+1})
$
so that
$S
=lim_{m to infty}s_{n+m}
ge s_n+lim_{m to infty}frac14(frac1{n+1}-frac1{n+m+1})
= s_n+frac1{4n+4}
$.
Therefore
$S ge s_n +dfrac1{4n+4}$.
Therefore,
for any $n$,
$s_n +dfrac1{4n+4}
le S
< s_n +dfrac1{4n}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2114321%2fprove-sum-k-1n-frac1nk-geq-frac712%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$sum_{k=1}^{n}frac{1}{n+k} = H_{2n}-H_{n}$$
are the terms of an increasing sequence, since
$$ H_{2n+2}-H_{n+1}-H_{2n}+H_n = frac{1}{2n+2}+frac{1}{2n+1}-frac{1}{n+1} = frac{1}{(2n+1)(2n+2)}>0.$$
$endgroup$
1
$begingroup$
I don't see how this helps though?
$endgroup$
– Ivy
Jan 26 '17 at 1:44
$begingroup$
@Ivy: $sum_{k=1}^{2}frac{1}{2+k}=frac{7}{12}$ and I have just proved the next terms are bigger.
$endgroup$
– Jack D'Aurizio
Jan 26 '17 at 1:46
add a comment |
$begingroup$
$$sum_{k=1}^{n}frac{1}{n+k} = H_{2n}-H_{n}$$
are the terms of an increasing sequence, since
$$ H_{2n+2}-H_{n+1}-H_{2n}+H_n = frac{1}{2n+2}+frac{1}{2n+1}-frac{1}{n+1} = frac{1}{(2n+1)(2n+2)}>0.$$
$endgroup$
1
$begingroup$
I don't see how this helps though?
$endgroup$
– Ivy
Jan 26 '17 at 1:44
$begingroup$
@Ivy: $sum_{k=1}^{2}frac{1}{2+k}=frac{7}{12}$ and I have just proved the next terms are bigger.
$endgroup$
– Jack D'Aurizio
Jan 26 '17 at 1:46
add a comment |
$begingroup$
$$sum_{k=1}^{n}frac{1}{n+k} = H_{2n}-H_{n}$$
are the terms of an increasing sequence, since
$$ H_{2n+2}-H_{n+1}-H_{2n}+H_n = frac{1}{2n+2}+frac{1}{2n+1}-frac{1}{n+1} = frac{1}{(2n+1)(2n+2)}>0.$$
$endgroup$
$$sum_{k=1}^{n}frac{1}{n+k} = H_{2n}-H_{n}$$
are the terms of an increasing sequence, since
$$ H_{2n+2}-H_{n+1}-H_{2n}+H_n = frac{1}{2n+2}+frac{1}{2n+1}-frac{1}{n+1} = frac{1}{(2n+1)(2n+2)}>0.$$
answered Jan 26 '17 at 1:39
Jack D'AurizioJack D'Aurizio
288k33280660
288k33280660
1
$begingroup$
I don't see how this helps though?
$endgroup$
– Ivy
Jan 26 '17 at 1:44
$begingroup$
@Ivy: $sum_{k=1}^{2}frac{1}{2+k}=frac{7}{12}$ and I have just proved the next terms are bigger.
$endgroup$
– Jack D'Aurizio
Jan 26 '17 at 1:46
add a comment |
1
$begingroup$
I don't see how this helps though?
$endgroup$
– Ivy
Jan 26 '17 at 1:44
$begingroup$
@Ivy: $sum_{k=1}^{2}frac{1}{2+k}=frac{7}{12}$ and I have just proved the next terms are bigger.
$endgroup$
– Jack D'Aurizio
Jan 26 '17 at 1:46
1
1
$begingroup$
I don't see how this helps though?
$endgroup$
– Ivy
Jan 26 '17 at 1:44
$begingroup$
I don't see how this helps though?
$endgroup$
– Ivy
Jan 26 '17 at 1:44
$begingroup$
@Ivy: $sum_{k=1}^{2}frac{1}{2+k}=frac{7}{12}$ and I have just proved the next terms are bigger.
$endgroup$
– Jack D'Aurizio
Jan 26 '17 at 1:46
$begingroup$
@Ivy: $sum_{k=1}^{2}frac{1}{2+k}=frac{7}{12}$ and I have just proved the next terms are bigger.
$endgroup$
– Jack D'Aurizio
Jan 26 '17 at 1:46
add a comment |
$begingroup$
By induction you can do:
$$sum_{k=1}^{n+1}frac{1}{n+1+k}=sum_{k=1}^nfrac{1}{n+k} -frac{1}{n+1}+frac{1}{2n+1}+frac{1}{2n+2}=\
=sum_{k=1}^nfrac{1}{n+k}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}$$
$endgroup$
add a comment |
$begingroup$
By induction you can do:
$$sum_{k=1}^{n+1}frac{1}{n+1+k}=sum_{k=1}^nfrac{1}{n+k} -frac{1}{n+1}+frac{1}{2n+1}+frac{1}{2n+2}=\
=sum_{k=1}^nfrac{1}{n+k}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}$$
$endgroup$
add a comment |
$begingroup$
By induction you can do:
$$sum_{k=1}^{n+1}frac{1}{n+1+k}=sum_{k=1}^nfrac{1}{n+k} -frac{1}{n+1}+frac{1}{2n+1}+frac{1}{2n+2}=\
=sum_{k=1}^nfrac{1}{n+k}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}$$
$endgroup$
By induction you can do:
$$sum_{k=1}^{n+1}frac{1}{n+1+k}=sum_{k=1}^nfrac{1}{n+k} -frac{1}{n+1}+frac{1}{2n+1}+frac{1}{2n+2}=\
=sum_{k=1}^nfrac{1}{n+k}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}+frac{1}{(2n+1)(2n+2)}ge frac{7}{12}$$
edited Jan 26 '17 at 20:04
answered Jan 26 '17 at 2:01
ArnaldoArnaldo
18.1k42246
18.1k42246
add a comment |
add a comment |
$begingroup$
If
$s_n
= sum_{k=1}^nfrac{1}{n+k}
$,
then
$begin{array}\
s_{n+1}
&= sum_{k=1}^{n+1}dfrac{1}{n+1+k}\
&= sum_{k=2}^{n+2}dfrac{1}{n+k}\
&= sum_{k=2}^{n}dfrac{1}{n+k}+dfrac1{2n+1}+dfrac1{2n+2}\
&= sum_{k=1}^{n}dfrac{1}{n+k}-dfrac1{n+1}+dfrac1{2n+1}+dfrac1{2n+2}\
&= s_n+dfrac{(2n+1)+(2n+2)-2(2n+1)}{(2n+1)(2n+2)}\
&= s_n+dfrac{1}{(2n+1)(2n+2)}\
end{array}
$
Therefore
$s_{n+1} > s_n$,
so $s_n$
is increasing.
Therefore,
if $n > m$,
$s_n > s_m$.
Note that
we can bound $s_n$ because
$begin{array}\
s_{n+1}
&= s_n+dfrac{1}{(2n+1)(2n+2)}\
&< s_n+dfrac{1}{(2n)(2n+2)}\
&< s_n+frac14dfrac{1}{n(n+1)}\
&< s_n+frac14(dfrac1{n}-dfrac1{n+1})\
end{array}
$
so that
$s_{n+1}-s_n
< frac14(dfrac1{n}-dfrac1{n+1})
$.
Summing,
$sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
< sum_{k=1}^{m-1}frac14(dfrac1{n}-dfrac1{n+1})
$
or
$s_{n+m}-s_n
lt frac14(frac1{n}-frac1{n+m})
lt frac1{4n}
$.
Therefore,
$lim_{n to infty} s_n$
exists,
and,
if
$S=lim_{n to infty} s_n$,
$S < s_n +dfrac1{4n}$.
We can similarly get a
lower bound on $s_n$
and, therefore,
a lower bound on $S$
in terms of $n$ and $s_n$.
(the following is done
with copy, paste, and edit.)
$begin{array}\
s_{n+1}
&= s_n+dfrac{1}{(2n+1)(2n+2)}\
&> s_n+dfrac{1}{(2n+2)(2n+4)}\
&> s_n+frac14dfrac{1}{(n+2)(n+2)}\
&> s_n+frac14(dfrac1{n+1}-dfrac1{n+2})\
end{array}
$
so that
$s_{n+1}-s_n
gt frac14(dfrac1{n+1}-dfrac1{n+2})
$.
Summing,
$sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
gt sum_{k=1}^{m-1}frac14(dfrac1{n+1}-dfrac1{n+2})
$
or
$s_{n+m}-s_n
gt frac14(frac1{n+1}-frac1{n+m+1})
$
so that
$S
=lim_{m to infty}s_{n+m}
ge s_n+lim_{m to infty}frac14(frac1{n+1}-frac1{n+m+1})
= s_n+frac1{4n+4}
$.
Therefore
$S ge s_n +dfrac1{4n+4}$.
Therefore,
for any $n$,
$s_n +dfrac1{4n+4}
le S
< s_n +dfrac1{4n}$.
$endgroup$
add a comment |
$begingroup$
If
$s_n
= sum_{k=1}^nfrac{1}{n+k}
$,
then
$begin{array}\
s_{n+1}
&= sum_{k=1}^{n+1}dfrac{1}{n+1+k}\
&= sum_{k=2}^{n+2}dfrac{1}{n+k}\
&= sum_{k=2}^{n}dfrac{1}{n+k}+dfrac1{2n+1}+dfrac1{2n+2}\
&= sum_{k=1}^{n}dfrac{1}{n+k}-dfrac1{n+1}+dfrac1{2n+1}+dfrac1{2n+2}\
&= s_n+dfrac{(2n+1)+(2n+2)-2(2n+1)}{(2n+1)(2n+2)}\
&= s_n+dfrac{1}{(2n+1)(2n+2)}\
end{array}
$
Therefore
$s_{n+1} > s_n$,
so $s_n$
is increasing.
Therefore,
if $n > m$,
$s_n > s_m$.
Note that
we can bound $s_n$ because
$begin{array}\
s_{n+1}
&= s_n+dfrac{1}{(2n+1)(2n+2)}\
&< s_n+dfrac{1}{(2n)(2n+2)}\
&< s_n+frac14dfrac{1}{n(n+1)}\
&< s_n+frac14(dfrac1{n}-dfrac1{n+1})\
end{array}
$
so that
$s_{n+1}-s_n
< frac14(dfrac1{n}-dfrac1{n+1})
$.
Summing,
$sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
< sum_{k=1}^{m-1}frac14(dfrac1{n}-dfrac1{n+1})
$
or
$s_{n+m}-s_n
lt frac14(frac1{n}-frac1{n+m})
lt frac1{4n}
$.
Therefore,
$lim_{n to infty} s_n$
exists,
and,
if
$S=lim_{n to infty} s_n$,
$S < s_n +dfrac1{4n}$.
We can similarly get a
lower bound on $s_n$
and, therefore,
a lower bound on $S$
in terms of $n$ and $s_n$.
(the following is done
with copy, paste, and edit.)
$begin{array}\
s_{n+1}
&= s_n+dfrac{1}{(2n+1)(2n+2)}\
&> s_n+dfrac{1}{(2n+2)(2n+4)}\
&> s_n+frac14dfrac{1}{(n+2)(n+2)}\
&> s_n+frac14(dfrac1{n+1}-dfrac1{n+2})\
end{array}
$
so that
$s_{n+1}-s_n
gt frac14(dfrac1{n+1}-dfrac1{n+2})
$.
Summing,
$sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
gt sum_{k=1}^{m-1}frac14(dfrac1{n+1}-dfrac1{n+2})
$
or
$s_{n+m}-s_n
gt frac14(frac1{n+1}-frac1{n+m+1})
$
so that
$S
=lim_{m to infty}s_{n+m}
ge s_n+lim_{m to infty}frac14(frac1{n+1}-frac1{n+m+1})
= s_n+frac1{4n+4}
$.
Therefore
$S ge s_n +dfrac1{4n+4}$.
Therefore,
for any $n$,
$s_n +dfrac1{4n+4}
le S
< s_n +dfrac1{4n}$.
$endgroup$
add a comment |
$begingroup$
If
$s_n
= sum_{k=1}^nfrac{1}{n+k}
$,
then
$begin{array}\
s_{n+1}
&= sum_{k=1}^{n+1}dfrac{1}{n+1+k}\
&= sum_{k=2}^{n+2}dfrac{1}{n+k}\
&= sum_{k=2}^{n}dfrac{1}{n+k}+dfrac1{2n+1}+dfrac1{2n+2}\
&= sum_{k=1}^{n}dfrac{1}{n+k}-dfrac1{n+1}+dfrac1{2n+1}+dfrac1{2n+2}\
&= s_n+dfrac{(2n+1)+(2n+2)-2(2n+1)}{(2n+1)(2n+2)}\
&= s_n+dfrac{1}{(2n+1)(2n+2)}\
end{array}
$
Therefore
$s_{n+1} > s_n$,
so $s_n$
is increasing.
Therefore,
if $n > m$,
$s_n > s_m$.
Note that
we can bound $s_n$ because
$begin{array}\
s_{n+1}
&= s_n+dfrac{1}{(2n+1)(2n+2)}\
&< s_n+dfrac{1}{(2n)(2n+2)}\
&< s_n+frac14dfrac{1}{n(n+1)}\
&< s_n+frac14(dfrac1{n}-dfrac1{n+1})\
end{array}
$
so that
$s_{n+1}-s_n
< frac14(dfrac1{n}-dfrac1{n+1})
$.
Summing,
$sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
< sum_{k=1}^{m-1}frac14(dfrac1{n}-dfrac1{n+1})
$
or
$s_{n+m}-s_n
lt frac14(frac1{n}-frac1{n+m})
lt frac1{4n}
$.
Therefore,
$lim_{n to infty} s_n$
exists,
and,
if
$S=lim_{n to infty} s_n$,
$S < s_n +dfrac1{4n}$.
We can similarly get a
lower bound on $s_n$
and, therefore,
a lower bound on $S$
in terms of $n$ and $s_n$.
(the following is done
with copy, paste, and edit.)
$begin{array}\
s_{n+1}
&= s_n+dfrac{1}{(2n+1)(2n+2)}\
&> s_n+dfrac{1}{(2n+2)(2n+4)}\
&> s_n+frac14dfrac{1}{(n+2)(n+2)}\
&> s_n+frac14(dfrac1{n+1}-dfrac1{n+2})\
end{array}
$
so that
$s_{n+1}-s_n
gt frac14(dfrac1{n+1}-dfrac1{n+2})
$.
Summing,
$sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
gt sum_{k=1}^{m-1}frac14(dfrac1{n+1}-dfrac1{n+2})
$
or
$s_{n+m}-s_n
gt frac14(frac1{n+1}-frac1{n+m+1})
$
so that
$S
=lim_{m to infty}s_{n+m}
ge s_n+lim_{m to infty}frac14(frac1{n+1}-frac1{n+m+1})
= s_n+frac1{4n+4}
$.
Therefore
$S ge s_n +dfrac1{4n+4}$.
Therefore,
for any $n$,
$s_n +dfrac1{4n+4}
le S
< s_n +dfrac1{4n}$.
$endgroup$
If
$s_n
= sum_{k=1}^nfrac{1}{n+k}
$,
then
$begin{array}\
s_{n+1}
&= sum_{k=1}^{n+1}dfrac{1}{n+1+k}\
&= sum_{k=2}^{n+2}dfrac{1}{n+k}\
&= sum_{k=2}^{n}dfrac{1}{n+k}+dfrac1{2n+1}+dfrac1{2n+2}\
&= sum_{k=1}^{n}dfrac{1}{n+k}-dfrac1{n+1}+dfrac1{2n+1}+dfrac1{2n+2}\
&= s_n+dfrac{(2n+1)+(2n+2)-2(2n+1)}{(2n+1)(2n+2)}\
&= s_n+dfrac{1}{(2n+1)(2n+2)}\
end{array}
$
Therefore
$s_{n+1} > s_n$,
so $s_n$
is increasing.
Therefore,
if $n > m$,
$s_n > s_m$.
Note that
we can bound $s_n$ because
$begin{array}\
s_{n+1}
&= s_n+dfrac{1}{(2n+1)(2n+2)}\
&< s_n+dfrac{1}{(2n)(2n+2)}\
&< s_n+frac14dfrac{1}{n(n+1)}\
&< s_n+frac14(dfrac1{n}-dfrac1{n+1})\
end{array}
$
so that
$s_{n+1}-s_n
< frac14(dfrac1{n}-dfrac1{n+1})
$.
Summing,
$sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
< sum_{k=1}^{m-1}frac14(dfrac1{n}-dfrac1{n+1})
$
or
$s_{n+m}-s_n
lt frac14(frac1{n}-frac1{n+m})
lt frac1{4n}
$.
Therefore,
$lim_{n to infty} s_n$
exists,
and,
if
$S=lim_{n to infty} s_n$,
$S < s_n +dfrac1{4n}$.
We can similarly get a
lower bound on $s_n$
and, therefore,
a lower bound on $S$
in terms of $n$ and $s_n$.
(the following is done
with copy, paste, and edit.)
$begin{array}\
s_{n+1}
&= s_n+dfrac{1}{(2n+1)(2n+2)}\
&> s_n+dfrac{1}{(2n+2)(2n+4)}\
&> s_n+frac14dfrac{1}{(n+2)(n+2)}\
&> s_n+frac14(dfrac1{n+1}-dfrac1{n+2})\
end{array}
$
so that
$s_{n+1}-s_n
gt frac14(dfrac1{n+1}-dfrac1{n+2})
$.
Summing,
$sum_{k=1}^{m-1}(s_{n+k+1}-s_{n+k})
gt sum_{k=1}^{m-1}frac14(dfrac1{n+1}-dfrac1{n+2})
$
or
$s_{n+m}-s_n
gt frac14(frac1{n+1}-frac1{n+m+1})
$
so that
$S
=lim_{m to infty}s_{n+m}
ge s_n+lim_{m to infty}frac14(frac1{n+1}-frac1{n+m+1})
= s_n+frac1{4n+4}
$.
Therefore
$S ge s_n +dfrac1{4n+4}$.
Therefore,
for any $n$,
$s_n +dfrac1{4n+4}
le S
< s_n +dfrac1{4n}$.
answered Jan 26 '17 at 20:45
marty cohenmarty cohen
73.1k549128
73.1k549128
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2114321%2fprove-sum-k-1n-frac1nk-geq-frac712%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$frac 1 {n+1+k} < frac 1 {n+k} $. Do you know by how much. Can you prove $sum (frac 1 {n+1+k} - frac 1 {n+k} + frac 1 {2 (n+1)} le 0$?
$endgroup$
– fleablood
Jan 26 '17 at 1:46