Calculate $limlimits_{ xto + infty}xcdot sin(sqrt{x^{2}+3}-sqrt{x^{2}+2})$
$begingroup$
I know that $$limlimits_{ xto + infty}xcdot sin(sqrt{x^{2}+3}-sqrt{x^{2}+2})\=limlimits_{ xto + infty}xcdot sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right).$$ If $x rightarrow + infty$, then $sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right)rightarrow sin0 $. However I have also $x$ before $sin x$ and I don't know how to calculate it.
real-analysis limits
$endgroup$
add a comment |
$begingroup$
I know that $$limlimits_{ xto + infty}xcdot sin(sqrt{x^{2}+3}-sqrt{x^{2}+2})\=limlimits_{ xto + infty}xcdot sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right).$$ If $x rightarrow + infty$, then $sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right)rightarrow sin0 $. However I have also $x$ before $sin x$ and I don't know how to calculate it.
real-analysis limits
$endgroup$
add a comment |
$begingroup$
I know that $$limlimits_{ xto + infty}xcdot sin(sqrt{x^{2}+3}-sqrt{x^{2}+2})\=limlimits_{ xto + infty}xcdot sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right).$$ If $x rightarrow + infty$, then $sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right)rightarrow sin0 $. However I have also $x$ before $sin x$ and I don't know how to calculate it.
real-analysis limits
$endgroup$
I know that $$limlimits_{ xto + infty}xcdot sin(sqrt{x^{2}+3}-sqrt{x^{2}+2})\=limlimits_{ xto + infty}xcdot sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right).$$ If $x rightarrow + infty$, then $sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right)rightarrow sin0 $. However I have also $x$ before $sin x$ and I don't know how to calculate it.
real-analysis limits
real-analysis limits
edited Dec 31 '18 at 13:52
user376343
3,3582826
3,3582826
asked Dec 31 '18 at 13:23
MP3129MP3129
1937
1937
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Letting $h=frac1x$:
$$begin{array}{cl}
&displaystyle lim_{x to infty} x sin left( sqrt{x^2+3} - sqrt{x^2+2} right) \
=&displaystyle lim_{x to infty} x sin left( frac 1 {sqrt{x^2+3} + sqrt{x^2+2} } right) \
=&displaystyle lim_{h to 0^+} frac1h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
=&displaystyle lim_{h to 0^+} frac 1 {sqrt{1+3h^2} + sqrt{1+2h^2}} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
=&displaystyle frac12 times lim_{h to 0^+} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
=&displaystyle frac12 times 1 \
=&dfrac12
end{array}$$
$endgroup$
$begingroup$
Actually the searched limit is equal to $$frac{1}{2}$$
$endgroup$
– Dr. Sonnhard Graubner
Dec 31 '18 at 13:36
$begingroup$
Fixed.${ }$${ }$
$endgroup$
– Kenny Lau
Dec 31 '18 at 13:37
add a comment |
$begingroup$
begin{align}
lim_{x to infty} x cdot left( sin left( sqrt{x^2+3}-sqrt{x^2+2}right)right)&=lim_{x to infty} x cdot sin left( frac{1}{sqrt{x^2+3}+sqrt{x^2+2}}right)\
&=lim_{x to infty} frac{x}{sqrt{x^2+3}+sqrt{x^2+2}}\
&=lim_{x to infty} frac{1}{sqrt{1+frac{3}{x^2}}+sqrt{1+frac{2}{x^2}}}\
&= frac12
end{align}
$endgroup$
$begingroup$
You use the assumption that d.d.d. x $sinx = x$, I understand correctly?
$endgroup$
– MP3129
Dec 31 '18 at 14:02
2
$begingroup$
not sure what do those $d$ mean.The main trick is $lim_{h to 0^+} frac{sin h}h=1$, hence that is why I can remove the sine.
$endgroup$
– Siong Thye Goh
Dec 31 '18 at 14:07
add a comment |
$begingroup$
The ordo calculus is very useful for such problems. Sometimes you do not need the full power of Taylor series, only the first couple of coefficients.
$sqrt{x^2+3}- sqrt{x^2+3} = x(sqrt{1+3/x^2}- sqrt{1+2/x^2})=$
$= x(1+frac{1}{2}cdot(3/x^2)+O(1/x^4)- 1-frac{1}{2}cdot(2/x^2)+O(1/x^4))= frac{1}{2x}+O(1/x^3)$.
Now $sin(frac{1}{2x}+O(1/x^3))= frac{1}{2x}+O(1/x^2)$ as $xrightarrow infty$, thus the expression is $frac{1}{2}+ O(frac{1}{x})$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057710%2fcalculate-lim-limits-x-to-inftyx-cdot-sin-sqrtx23-sqrtx22%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Letting $h=frac1x$:
$$begin{array}{cl}
&displaystyle lim_{x to infty} x sin left( sqrt{x^2+3} - sqrt{x^2+2} right) \
=&displaystyle lim_{x to infty} x sin left( frac 1 {sqrt{x^2+3} + sqrt{x^2+2} } right) \
=&displaystyle lim_{h to 0^+} frac1h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
=&displaystyle lim_{h to 0^+} frac 1 {sqrt{1+3h^2} + sqrt{1+2h^2}} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
=&displaystyle frac12 times lim_{h to 0^+} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
=&displaystyle frac12 times 1 \
=&dfrac12
end{array}$$
$endgroup$
$begingroup$
Actually the searched limit is equal to $$frac{1}{2}$$
$endgroup$
– Dr. Sonnhard Graubner
Dec 31 '18 at 13:36
$begingroup$
Fixed.${ }$${ }$
$endgroup$
– Kenny Lau
Dec 31 '18 at 13:37
add a comment |
$begingroup$
Letting $h=frac1x$:
$$begin{array}{cl}
&displaystyle lim_{x to infty} x sin left( sqrt{x^2+3} - sqrt{x^2+2} right) \
=&displaystyle lim_{x to infty} x sin left( frac 1 {sqrt{x^2+3} + sqrt{x^2+2} } right) \
=&displaystyle lim_{h to 0^+} frac1h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
=&displaystyle lim_{h to 0^+} frac 1 {sqrt{1+3h^2} + sqrt{1+2h^2}} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
=&displaystyle frac12 times lim_{h to 0^+} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
=&displaystyle frac12 times 1 \
=&dfrac12
end{array}$$
$endgroup$
$begingroup$
Actually the searched limit is equal to $$frac{1}{2}$$
$endgroup$
– Dr. Sonnhard Graubner
Dec 31 '18 at 13:36
$begingroup$
Fixed.${ }$${ }$
$endgroup$
– Kenny Lau
Dec 31 '18 at 13:37
add a comment |
$begingroup$
Letting $h=frac1x$:
$$begin{array}{cl}
&displaystyle lim_{x to infty} x sin left( sqrt{x^2+3} - sqrt{x^2+2} right) \
=&displaystyle lim_{x to infty} x sin left( frac 1 {sqrt{x^2+3} + sqrt{x^2+2} } right) \
=&displaystyle lim_{h to 0^+} frac1h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
=&displaystyle lim_{h to 0^+} frac 1 {sqrt{1+3h^2} + sqrt{1+2h^2}} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
=&displaystyle frac12 times lim_{h to 0^+} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
=&displaystyle frac12 times 1 \
=&dfrac12
end{array}$$
$endgroup$
Letting $h=frac1x$:
$$begin{array}{cl}
&displaystyle lim_{x to infty} x sin left( sqrt{x^2+3} - sqrt{x^2+2} right) \
=&displaystyle lim_{x to infty} x sin left( frac 1 {sqrt{x^2+3} + sqrt{x^2+2} } right) \
=&displaystyle lim_{h to 0^+} frac1h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
=&displaystyle lim_{h to 0^+} frac 1 {sqrt{1+3h^2} + sqrt{1+2h^2}} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
=&displaystyle frac12 times lim_{h to 0^+} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
=&displaystyle frac12 times 1 \
=&dfrac12
end{array}$$
edited Dec 31 '18 at 13:37
answered Dec 31 '18 at 13:30
Kenny LauKenny Lau
19.9k2159
19.9k2159
$begingroup$
Actually the searched limit is equal to $$frac{1}{2}$$
$endgroup$
– Dr. Sonnhard Graubner
Dec 31 '18 at 13:36
$begingroup$
Fixed.${ }$${ }$
$endgroup$
– Kenny Lau
Dec 31 '18 at 13:37
add a comment |
$begingroup$
Actually the searched limit is equal to $$frac{1}{2}$$
$endgroup$
– Dr. Sonnhard Graubner
Dec 31 '18 at 13:36
$begingroup$
Fixed.${ }$${ }$
$endgroup$
– Kenny Lau
Dec 31 '18 at 13:37
$begingroup$
Actually the searched limit is equal to $$frac{1}{2}$$
$endgroup$
– Dr. Sonnhard Graubner
Dec 31 '18 at 13:36
$begingroup$
Actually the searched limit is equal to $$frac{1}{2}$$
$endgroup$
– Dr. Sonnhard Graubner
Dec 31 '18 at 13:36
$begingroup$
Fixed.${ }$${ }$
$endgroup$
– Kenny Lau
Dec 31 '18 at 13:37
$begingroup$
Fixed.${ }$${ }$
$endgroup$
– Kenny Lau
Dec 31 '18 at 13:37
add a comment |
$begingroup$
begin{align}
lim_{x to infty} x cdot left( sin left( sqrt{x^2+3}-sqrt{x^2+2}right)right)&=lim_{x to infty} x cdot sin left( frac{1}{sqrt{x^2+3}+sqrt{x^2+2}}right)\
&=lim_{x to infty} frac{x}{sqrt{x^2+3}+sqrt{x^2+2}}\
&=lim_{x to infty} frac{1}{sqrt{1+frac{3}{x^2}}+sqrt{1+frac{2}{x^2}}}\
&= frac12
end{align}
$endgroup$
$begingroup$
You use the assumption that d.d.d. x $sinx = x$, I understand correctly?
$endgroup$
– MP3129
Dec 31 '18 at 14:02
2
$begingroup$
not sure what do those $d$ mean.The main trick is $lim_{h to 0^+} frac{sin h}h=1$, hence that is why I can remove the sine.
$endgroup$
– Siong Thye Goh
Dec 31 '18 at 14:07
add a comment |
$begingroup$
begin{align}
lim_{x to infty} x cdot left( sin left( sqrt{x^2+3}-sqrt{x^2+2}right)right)&=lim_{x to infty} x cdot sin left( frac{1}{sqrt{x^2+3}+sqrt{x^2+2}}right)\
&=lim_{x to infty} frac{x}{sqrt{x^2+3}+sqrt{x^2+2}}\
&=lim_{x to infty} frac{1}{sqrt{1+frac{3}{x^2}}+sqrt{1+frac{2}{x^2}}}\
&= frac12
end{align}
$endgroup$
$begingroup$
You use the assumption that d.d.d. x $sinx = x$, I understand correctly?
$endgroup$
– MP3129
Dec 31 '18 at 14:02
2
$begingroup$
not sure what do those $d$ mean.The main trick is $lim_{h to 0^+} frac{sin h}h=1$, hence that is why I can remove the sine.
$endgroup$
– Siong Thye Goh
Dec 31 '18 at 14:07
add a comment |
$begingroup$
begin{align}
lim_{x to infty} x cdot left( sin left( sqrt{x^2+3}-sqrt{x^2+2}right)right)&=lim_{x to infty} x cdot sin left( frac{1}{sqrt{x^2+3}+sqrt{x^2+2}}right)\
&=lim_{x to infty} frac{x}{sqrt{x^2+3}+sqrt{x^2+2}}\
&=lim_{x to infty} frac{1}{sqrt{1+frac{3}{x^2}}+sqrt{1+frac{2}{x^2}}}\
&= frac12
end{align}
$endgroup$
begin{align}
lim_{x to infty} x cdot left( sin left( sqrt{x^2+3}-sqrt{x^2+2}right)right)&=lim_{x to infty} x cdot sin left( frac{1}{sqrt{x^2+3}+sqrt{x^2+2}}right)\
&=lim_{x to infty} frac{x}{sqrt{x^2+3}+sqrt{x^2+2}}\
&=lim_{x to infty} frac{1}{sqrt{1+frac{3}{x^2}}+sqrt{1+frac{2}{x^2}}}\
&= frac12
end{align}
answered Dec 31 '18 at 13:37
Siong Thye GohSiong Thye Goh
100k1465117
100k1465117
$begingroup$
You use the assumption that d.d.d. x $sinx = x$, I understand correctly?
$endgroup$
– MP3129
Dec 31 '18 at 14:02
2
$begingroup$
not sure what do those $d$ mean.The main trick is $lim_{h to 0^+} frac{sin h}h=1$, hence that is why I can remove the sine.
$endgroup$
– Siong Thye Goh
Dec 31 '18 at 14:07
add a comment |
$begingroup$
You use the assumption that d.d.d. x $sinx = x$, I understand correctly?
$endgroup$
– MP3129
Dec 31 '18 at 14:02
2
$begingroup$
not sure what do those $d$ mean.The main trick is $lim_{h to 0^+} frac{sin h}h=1$, hence that is why I can remove the sine.
$endgroup$
– Siong Thye Goh
Dec 31 '18 at 14:07
$begingroup$
You use the assumption that d.d.d. x $sinx = x$, I understand correctly?
$endgroup$
– MP3129
Dec 31 '18 at 14:02
$begingroup$
You use the assumption that d.d.d. x $sinx = x$, I understand correctly?
$endgroup$
– MP3129
Dec 31 '18 at 14:02
2
2
$begingroup$
not sure what do those $d$ mean.The main trick is $lim_{h to 0^+} frac{sin h}h=1$, hence that is why I can remove the sine.
$endgroup$
– Siong Thye Goh
Dec 31 '18 at 14:07
$begingroup$
not sure what do those $d$ mean.The main trick is $lim_{h to 0^+} frac{sin h}h=1$, hence that is why I can remove the sine.
$endgroup$
– Siong Thye Goh
Dec 31 '18 at 14:07
add a comment |
$begingroup$
The ordo calculus is very useful for such problems. Sometimes you do not need the full power of Taylor series, only the first couple of coefficients.
$sqrt{x^2+3}- sqrt{x^2+3} = x(sqrt{1+3/x^2}- sqrt{1+2/x^2})=$
$= x(1+frac{1}{2}cdot(3/x^2)+O(1/x^4)- 1-frac{1}{2}cdot(2/x^2)+O(1/x^4))= frac{1}{2x}+O(1/x^3)$.
Now $sin(frac{1}{2x}+O(1/x^3))= frac{1}{2x}+O(1/x^2)$ as $xrightarrow infty$, thus the expression is $frac{1}{2}+ O(frac{1}{x})$.
$endgroup$
add a comment |
$begingroup$
The ordo calculus is very useful for such problems. Sometimes you do not need the full power of Taylor series, only the first couple of coefficients.
$sqrt{x^2+3}- sqrt{x^2+3} = x(sqrt{1+3/x^2}- sqrt{1+2/x^2})=$
$= x(1+frac{1}{2}cdot(3/x^2)+O(1/x^4)- 1-frac{1}{2}cdot(2/x^2)+O(1/x^4))= frac{1}{2x}+O(1/x^3)$.
Now $sin(frac{1}{2x}+O(1/x^3))= frac{1}{2x}+O(1/x^2)$ as $xrightarrow infty$, thus the expression is $frac{1}{2}+ O(frac{1}{x})$.
$endgroup$
add a comment |
$begingroup$
The ordo calculus is very useful for such problems. Sometimes you do not need the full power of Taylor series, only the first couple of coefficients.
$sqrt{x^2+3}- sqrt{x^2+3} = x(sqrt{1+3/x^2}- sqrt{1+2/x^2})=$
$= x(1+frac{1}{2}cdot(3/x^2)+O(1/x^4)- 1-frac{1}{2}cdot(2/x^2)+O(1/x^4))= frac{1}{2x}+O(1/x^3)$.
Now $sin(frac{1}{2x}+O(1/x^3))= frac{1}{2x}+O(1/x^2)$ as $xrightarrow infty$, thus the expression is $frac{1}{2}+ O(frac{1}{x})$.
$endgroup$
The ordo calculus is very useful for such problems. Sometimes you do not need the full power of Taylor series, only the first couple of coefficients.
$sqrt{x^2+3}- sqrt{x^2+3} = x(sqrt{1+3/x^2}- sqrt{1+2/x^2})=$
$= x(1+frac{1}{2}cdot(3/x^2)+O(1/x^4)- 1-frac{1}{2}cdot(2/x^2)+O(1/x^4))= frac{1}{2x}+O(1/x^3)$.
Now $sin(frac{1}{2x}+O(1/x^3))= frac{1}{2x}+O(1/x^2)$ as $xrightarrow infty$, thus the expression is $frac{1}{2}+ O(frac{1}{x})$.
edited Dec 31 '18 at 13:52
answered Dec 31 '18 at 13:40
A. PongráczA. Pongrácz
5,9831929
5,9831929
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057710%2fcalculate-lim-limits-x-to-inftyx-cdot-sin-sqrtx23-sqrtx22%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown