Compute $limlimits_{xto0} left(sin x + cos xright)^{1/x}$












0












$begingroup$


I hit a snag while solving exponential functions whose limits are given.



Question:



$$lim_{xto0} left(sin x + cos xright)^left(1/xright)$$



My Approach:



I am using the followin relation to solve the question of these type.



$$lim_{xto0} left(1 + xright)^left(1/xright) = e qquad(2)$$



But now how should i convert my above question so that i can apply the rule as mentioned in $(2)$.



Conclusion:



First of all help will be appreciated.



Second how to solve functions of such kind in a quick method.



Thanks,



P.S.(Feel free to edit my question if you find any errors or mistakes in my question)










share|cite|improve this question











$endgroup$












  • $begingroup$
    @Crostul The LH step in this case would be absurd, as in every situation where one is after a limit $limlimits_{xto0}g(x)/x$ with $g$ differentiable at $0$ and $g(0)=0$.
    $endgroup$
    – Did
    Dec 31 '18 at 12:10










  • $begingroup$
    @Did , please elaborate why would the LH step be absurd?
    $endgroup$
    – Gingitsune
    Dec 31 '18 at 12:24






  • 2




    $begingroup$
    Because using LH to find $limlimits_{xto0} g(x)/h(x)$ when $g(0)=h(0)=0$ requires to compute $g'(0)$ and $h'(0)$. But, in the case when $h(x)=x$, one already knows that $limlimits_{xto0}g(x)/x=g'(0)$ by definition of the derivative of $g$ since $g(x)/x=(g(x)-g(0))/(x-0)$. So, invoking LH here amounts to a beautifully (?) absurd logical circle.
    $endgroup$
    – Did
    Dec 31 '18 at 12:29


















0












$begingroup$


I hit a snag while solving exponential functions whose limits are given.



Question:



$$lim_{xto0} left(sin x + cos xright)^left(1/xright)$$



My Approach:



I am using the followin relation to solve the question of these type.



$$lim_{xto0} left(1 + xright)^left(1/xright) = e qquad(2)$$



But now how should i convert my above question so that i can apply the rule as mentioned in $(2)$.



Conclusion:



First of all help will be appreciated.



Second how to solve functions of such kind in a quick method.



Thanks,



P.S.(Feel free to edit my question if you find any errors or mistakes in my question)










share|cite|improve this question











$endgroup$












  • $begingroup$
    @Crostul The LH step in this case would be absurd, as in every situation where one is after a limit $limlimits_{xto0}g(x)/x$ with $g$ differentiable at $0$ and $g(0)=0$.
    $endgroup$
    – Did
    Dec 31 '18 at 12:10










  • $begingroup$
    @Did , please elaborate why would the LH step be absurd?
    $endgroup$
    – Gingitsune
    Dec 31 '18 at 12:24






  • 2




    $begingroup$
    Because using LH to find $limlimits_{xto0} g(x)/h(x)$ when $g(0)=h(0)=0$ requires to compute $g'(0)$ and $h'(0)$. But, in the case when $h(x)=x$, one already knows that $limlimits_{xto0}g(x)/x=g'(0)$ by definition of the derivative of $g$ since $g(x)/x=(g(x)-g(0))/(x-0)$. So, invoking LH here amounts to a beautifully (?) absurd logical circle.
    $endgroup$
    – Did
    Dec 31 '18 at 12:29
















0












0








0





$begingroup$


I hit a snag while solving exponential functions whose limits are given.



Question:



$$lim_{xto0} left(sin x + cos xright)^left(1/xright)$$



My Approach:



I am using the followin relation to solve the question of these type.



$$lim_{xto0} left(1 + xright)^left(1/xright) = e qquad(2)$$



But now how should i convert my above question so that i can apply the rule as mentioned in $(2)$.



Conclusion:



First of all help will be appreciated.



Second how to solve functions of such kind in a quick method.



Thanks,



P.S.(Feel free to edit my question if you find any errors or mistakes in my question)










share|cite|improve this question











$endgroup$




I hit a snag while solving exponential functions whose limits are given.



Question:



$$lim_{xto0} left(sin x + cos xright)^left(1/xright)$$



My Approach:



I am using the followin relation to solve the question of these type.



$$lim_{xto0} left(1 + xright)^left(1/xright) = e qquad(2)$$



But now how should i convert my above question so that i can apply the rule as mentioned in $(2)$.



Conclusion:



First of all help will be appreciated.



Second how to solve functions of such kind in a quick method.



Thanks,



P.S.(Feel free to edit my question if you find any errors or mistakes in my question)







limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 31 '18 at 14:17









Fortox

657




657










asked Dec 31 '18 at 12:04









GingitsuneGingitsune

247




247












  • $begingroup$
    @Crostul The LH step in this case would be absurd, as in every situation where one is after a limit $limlimits_{xto0}g(x)/x$ with $g$ differentiable at $0$ and $g(0)=0$.
    $endgroup$
    – Did
    Dec 31 '18 at 12:10










  • $begingroup$
    @Did , please elaborate why would the LH step be absurd?
    $endgroup$
    – Gingitsune
    Dec 31 '18 at 12:24






  • 2




    $begingroup$
    Because using LH to find $limlimits_{xto0} g(x)/h(x)$ when $g(0)=h(0)=0$ requires to compute $g'(0)$ and $h'(0)$. But, in the case when $h(x)=x$, one already knows that $limlimits_{xto0}g(x)/x=g'(0)$ by definition of the derivative of $g$ since $g(x)/x=(g(x)-g(0))/(x-0)$. So, invoking LH here amounts to a beautifully (?) absurd logical circle.
    $endgroup$
    – Did
    Dec 31 '18 at 12:29




















  • $begingroup$
    @Crostul The LH step in this case would be absurd, as in every situation where one is after a limit $limlimits_{xto0}g(x)/x$ with $g$ differentiable at $0$ and $g(0)=0$.
    $endgroup$
    – Did
    Dec 31 '18 at 12:10










  • $begingroup$
    @Did , please elaborate why would the LH step be absurd?
    $endgroup$
    – Gingitsune
    Dec 31 '18 at 12:24






  • 2




    $begingroup$
    Because using LH to find $limlimits_{xto0} g(x)/h(x)$ when $g(0)=h(0)=0$ requires to compute $g'(0)$ and $h'(0)$. But, in the case when $h(x)=x$, one already knows that $limlimits_{xto0}g(x)/x=g'(0)$ by definition of the derivative of $g$ since $g(x)/x=(g(x)-g(0))/(x-0)$. So, invoking LH here amounts to a beautifully (?) absurd logical circle.
    $endgroup$
    – Did
    Dec 31 '18 at 12:29


















$begingroup$
@Crostul The LH step in this case would be absurd, as in every situation where one is after a limit $limlimits_{xto0}g(x)/x$ with $g$ differentiable at $0$ and $g(0)=0$.
$endgroup$
– Did
Dec 31 '18 at 12:10




$begingroup$
@Crostul The LH step in this case would be absurd, as in every situation where one is after a limit $limlimits_{xto0}g(x)/x$ with $g$ differentiable at $0$ and $g(0)=0$.
$endgroup$
– Did
Dec 31 '18 at 12:10












$begingroup$
@Did , please elaborate why would the LH step be absurd?
$endgroup$
– Gingitsune
Dec 31 '18 at 12:24




$begingroup$
@Did , please elaborate why would the LH step be absurd?
$endgroup$
– Gingitsune
Dec 31 '18 at 12:24




2




2




$begingroup$
Because using LH to find $limlimits_{xto0} g(x)/h(x)$ when $g(0)=h(0)=0$ requires to compute $g'(0)$ and $h'(0)$. But, in the case when $h(x)=x$, one already knows that $limlimits_{xto0}g(x)/x=g'(0)$ by definition of the derivative of $g$ since $g(x)/x=(g(x)-g(0))/(x-0)$. So, invoking LH here amounts to a beautifully (?) absurd logical circle.
$endgroup$
– Did
Dec 31 '18 at 12:29






$begingroup$
Because using LH to find $limlimits_{xto0} g(x)/h(x)$ when $g(0)=h(0)=0$ requires to compute $g'(0)$ and $h'(0)$. But, in the case when $h(x)=x$, one already knows that $limlimits_{xto0}g(x)/x=g'(0)$ by definition of the derivative of $g$ since $g(x)/x=(g(x)-g(0))/(x-0)$. So, invoking LH here amounts to a beautifully (?) absurd logical circle.
$endgroup$
– Did
Dec 31 '18 at 12:29












3 Answers
3






active

oldest

votes


















6












$begingroup$

In this case the best idea is take logarithm, and then use De l'Hopital. $$lim_{x to 0} frac{ln (sin x + cos x)}{x} = lim_{x to 0} frac{cos x - sin x}{sin x + cos x} = 1$$ Hence the answer is $e^{1}=e$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    See comment on main.
    $endgroup$
    – Did
    Dec 31 '18 at 12:10






  • 1




    $begingroup$
    It isn't $e^{-1}$ anyway
    $endgroup$
    – Kenny Lau
    Dec 31 '18 at 12:19






  • 2




    $begingroup$
    @Crostul , When apply the $lim_{xto0}$ shouldn't the answer be $1$ ?
    $endgroup$
    – Gingitsune
    Dec 31 '18 at 12:21



















2












$begingroup$

Alternatively, take $cos x$ out:
$$lim_{xto0} left(sin x + cos xright)^left(1/xright)=\
lim_{xto0} left(cos xright)^left(1/xright)cdot lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)}cdot color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)}=color{blue}1cdot color{red}e=e,$$

because using the relation you want:
$$color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)=\
lim_{xto0} left[left(1+left(-2sin^2 frac x2right)right)^frac{1}{-2sin^2 frac x2}right]^{frac{-2sin^2 frac x2}{x}}=e^0=1};\
color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
lim_{xto0} left[left(1+frac{sin x}{cos x}right)^{frac{cos x}{sin x}}right]^frac{sin x}{xcos x}=e^1=e}.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thanks you helped me find one more way to approach questions of this kind
    $endgroup$
    – Gingitsune
    Jan 1 at 12:06



















0












$begingroup$

Another standard way works with enforcing a $color{red}{1}$ in the basis and considering the resulting exponent:



begin{eqnarray*} left(sin x + cos xright)^{1/x}
& = & left( color{red}{1} + (color{blue}{sin x + cos x - 1})right)^{1/x}\
& = & left (left( 1 + (color{blue}{sin x + cos x - 1})right)^{1/(color{blue}{sin x + cos x - 1})}right)^{frac{color{blue}{sin x + cos x - 1}}{x}} \
& stackrel {x to 0}{longrightarrow} & e^{lim_{xto 0}frac{sin x + cos x - 1}{x}}\
& = & e^{1+cos'(0)} = e \
end{eqnarray*}






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057643%2fcompute-lim-limits-x-to0-left-sin-x-cos-x-right1-x%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    6












    $begingroup$

    In this case the best idea is take logarithm, and then use De l'Hopital. $$lim_{x to 0} frac{ln (sin x + cos x)}{x} = lim_{x to 0} frac{cos x - sin x}{sin x + cos x} = 1$$ Hence the answer is $e^{1}=e$.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      See comment on main.
      $endgroup$
      – Did
      Dec 31 '18 at 12:10






    • 1




      $begingroup$
      It isn't $e^{-1}$ anyway
      $endgroup$
      – Kenny Lau
      Dec 31 '18 at 12:19






    • 2




      $begingroup$
      @Crostul , When apply the $lim_{xto0}$ shouldn't the answer be $1$ ?
      $endgroup$
      – Gingitsune
      Dec 31 '18 at 12:21
















    6












    $begingroup$

    In this case the best idea is take logarithm, and then use De l'Hopital. $$lim_{x to 0} frac{ln (sin x + cos x)}{x} = lim_{x to 0} frac{cos x - sin x}{sin x + cos x} = 1$$ Hence the answer is $e^{1}=e$.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      See comment on main.
      $endgroup$
      – Did
      Dec 31 '18 at 12:10






    • 1




      $begingroup$
      It isn't $e^{-1}$ anyway
      $endgroup$
      – Kenny Lau
      Dec 31 '18 at 12:19






    • 2




      $begingroup$
      @Crostul , When apply the $lim_{xto0}$ shouldn't the answer be $1$ ?
      $endgroup$
      – Gingitsune
      Dec 31 '18 at 12:21














    6












    6








    6





    $begingroup$

    In this case the best idea is take logarithm, and then use De l'Hopital. $$lim_{x to 0} frac{ln (sin x + cos x)}{x} = lim_{x to 0} frac{cos x - sin x}{sin x + cos x} = 1$$ Hence the answer is $e^{1}=e$.






    share|cite|improve this answer











    $endgroup$



    In this case the best idea is take logarithm, and then use De l'Hopital. $$lim_{x to 0} frac{ln (sin x + cos x)}{x} = lim_{x to 0} frac{cos x - sin x}{sin x + cos x} = 1$$ Hence the answer is $e^{1}=e$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 31 '18 at 12:40

























    answered Dec 31 '18 at 12:08









    CrostulCrostul

    27.8k22352




    27.8k22352












    • $begingroup$
      See comment on main.
      $endgroup$
      – Did
      Dec 31 '18 at 12:10






    • 1




      $begingroup$
      It isn't $e^{-1}$ anyway
      $endgroup$
      – Kenny Lau
      Dec 31 '18 at 12:19






    • 2




      $begingroup$
      @Crostul , When apply the $lim_{xto0}$ shouldn't the answer be $1$ ?
      $endgroup$
      – Gingitsune
      Dec 31 '18 at 12:21


















    • $begingroup$
      See comment on main.
      $endgroup$
      – Did
      Dec 31 '18 at 12:10






    • 1




      $begingroup$
      It isn't $e^{-1}$ anyway
      $endgroup$
      – Kenny Lau
      Dec 31 '18 at 12:19






    • 2




      $begingroup$
      @Crostul , When apply the $lim_{xto0}$ shouldn't the answer be $1$ ?
      $endgroup$
      – Gingitsune
      Dec 31 '18 at 12:21
















    $begingroup$
    See comment on main.
    $endgroup$
    – Did
    Dec 31 '18 at 12:10




    $begingroup$
    See comment on main.
    $endgroup$
    – Did
    Dec 31 '18 at 12:10




    1




    1




    $begingroup$
    It isn't $e^{-1}$ anyway
    $endgroup$
    – Kenny Lau
    Dec 31 '18 at 12:19




    $begingroup$
    It isn't $e^{-1}$ anyway
    $endgroup$
    – Kenny Lau
    Dec 31 '18 at 12:19




    2




    2




    $begingroup$
    @Crostul , When apply the $lim_{xto0}$ shouldn't the answer be $1$ ?
    $endgroup$
    – Gingitsune
    Dec 31 '18 at 12:21




    $begingroup$
    @Crostul , When apply the $lim_{xto0}$ shouldn't the answer be $1$ ?
    $endgroup$
    – Gingitsune
    Dec 31 '18 at 12:21











    2












    $begingroup$

    Alternatively, take $cos x$ out:
    $$lim_{xto0} left(sin x + cos xright)^left(1/xright)=\
    lim_{xto0} left(cos xright)^left(1/xright)cdot lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
    color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)}cdot color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)}=color{blue}1cdot color{red}e=e,$$

    because using the relation you want:
    $$color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)=\
    lim_{xto0} left[left(1+left(-2sin^2 frac x2right)right)^frac{1}{-2sin^2 frac x2}right]^{frac{-2sin^2 frac x2}{x}}=e^0=1};\
    color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
    lim_{xto0} left[left(1+frac{sin x}{cos x}right)^{frac{cos x}{sin x}}right]^frac{sin x}{xcos x}=e^1=e}.$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      thanks you helped me find one more way to approach questions of this kind
      $endgroup$
      – Gingitsune
      Jan 1 at 12:06
















    2












    $begingroup$

    Alternatively, take $cos x$ out:
    $$lim_{xto0} left(sin x + cos xright)^left(1/xright)=\
    lim_{xto0} left(cos xright)^left(1/xright)cdot lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
    color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)}cdot color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)}=color{blue}1cdot color{red}e=e,$$

    because using the relation you want:
    $$color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)=\
    lim_{xto0} left[left(1+left(-2sin^2 frac x2right)right)^frac{1}{-2sin^2 frac x2}right]^{frac{-2sin^2 frac x2}{x}}=e^0=1};\
    color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
    lim_{xto0} left[left(1+frac{sin x}{cos x}right)^{frac{cos x}{sin x}}right]^frac{sin x}{xcos x}=e^1=e}.$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      thanks you helped me find one more way to approach questions of this kind
      $endgroup$
      – Gingitsune
      Jan 1 at 12:06














    2












    2








    2





    $begingroup$

    Alternatively, take $cos x$ out:
    $$lim_{xto0} left(sin x + cos xright)^left(1/xright)=\
    lim_{xto0} left(cos xright)^left(1/xright)cdot lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
    color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)}cdot color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)}=color{blue}1cdot color{red}e=e,$$

    because using the relation you want:
    $$color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)=\
    lim_{xto0} left[left(1+left(-2sin^2 frac x2right)right)^frac{1}{-2sin^2 frac x2}right]^{frac{-2sin^2 frac x2}{x}}=e^0=1};\
    color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
    lim_{xto0} left[left(1+frac{sin x}{cos x}right)^{frac{cos x}{sin x}}right]^frac{sin x}{xcos x}=e^1=e}.$$






    share|cite|improve this answer









    $endgroup$



    Alternatively, take $cos x$ out:
    $$lim_{xto0} left(sin x + cos xright)^left(1/xright)=\
    lim_{xto0} left(cos xright)^left(1/xright)cdot lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
    color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)}cdot color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)}=color{blue}1cdot color{red}e=e,$$

    because using the relation you want:
    $$color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)=\
    lim_{xto0} left[left(1+left(-2sin^2 frac x2right)right)^frac{1}{-2sin^2 frac x2}right]^{frac{-2sin^2 frac x2}{x}}=e^0=1};\
    color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
    lim_{xto0} left[left(1+frac{sin x}{cos x}right)^{frac{cos x}{sin x}}right]^frac{sin x}{xcos x}=e^1=e}.$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 1 at 10:05









    farruhotafarruhota

    19.7k2738




    19.7k2738












    • $begingroup$
      thanks you helped me find one more way to approach questions of this kind
      $endgroup$
      – Gingitsune
      Jan 1 at 12:06


















    • $begingroup$
      thanks you helped me find one more way to approach questions of this kind
      $endgroup$
      – Gingitsune
      Jan 1 at 12:06
















    $begingroup$
    thanks you helped me find one more way to approach questions of this kind
    $endgroup$
    – Gingitsune
    Jan 1 at 12:06




    $begingroup$
    thanks you helped me find one more way to approach questions of this kind
    $endgroup$
    – Gingitsune
    Jan 1 at 12:06











    0












    $begingroup$

    Another standard way works with enforcing a $color{red}{1}$ in the basis and considering the resulting exponent:



    begin{eqnarray*} left(sin x + cos xright)^{1/x}
    & = & left( color{red}{1} + (color{blue}{sin x + cos x - 1})right)^{1/x}\
    & = & left (left( 1 + (color{blue}{sin x + cos x - 1})right)^{1/(color{blue}{sin x + cos x - 1})}right)^{frac{color{blue}{sin x + cos x - 1}}{x}} \
    & stackrel {x to 0}{longrightarrow} & e^{lim_{xto 0}frac{sin x + cos x - 1}{x}}\
    & = & e^{1+cos'(0)} = e \
    end{eqnarray*}






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Another standard way works with enforcing a $color{red}{1}$ in the basis and considering the resulting exponent:



      begin{eqnarray*} left(sin x + cos xright)^{1/x}
      & = & left( color{red}{1} + (color{blue}{sin x + cos x - 1})right)^{1/x}\
      & = & left (left( 1 + (color{blue}{sin x + cos x - 1})right)^{1/(color{blue}{sin x + cos x - 1})}right)^{frac{color{blue}{sin x + cos x - 1}}{x}} \
      & stackrel {x to 0}{longrightarrow} & e^{lim_{xto 0}frac{sin x + cos x - 1}{x}}\
      & = & e^{1+cos'(0)} = e \
      end{eqnarray*}






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Another standard way works with enforcing a $color{red}{1}$ in the basis and considering the resulting exponent:



        begin{eqnarray*} left(sin x + cos xright)^{1/x}
        & = & left( color{red}{1} + (color{blue}{sin x + cos x - 1})right)^{1/x}\
        & = & left (left( 1 + (color{blue}{sin x + cos x - 1})right)^{1/(color{blue}{sin x + cos x - 1})}right)^{frac{color{blue}{sin x + cos x - 1}}{x}} \
        & stackrel {x to 0}{longrightarrow} & e^{lim_{xto 0}frac{sin x + cos x - 1}{x}}\
        & = & e^{1+cos'(0)} = e \
        end{eqnarray*}






        share|cite|improve this answer









        $endgroup$



        Another standard way works with enforcing a $color{red}{1}$ in the basis and considering the resulting exponent:



        begin{eqnarray*} left(sin x + cos xright)^{1/x}
        & = & left( color{red}{1} + (color{blue}{sin x + cos x - 1})right)^{1/x}\
        & = & left (left( 1 + (color{blue}{sin x + cos x - 1})right)^{1/(color{blue}{sin x + cos x - 1})}right)^{frac{color{blue}{sin x + cos x - 1}}{x}} \
        & stackrel {x to 0}{longrightarrow} & e^{lim_{xto 0}frac{sin x + cos x - 1}{x}}\
        & = & e^{1+cos'(0)} = e \
        end{eqnarray*}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 1 at 6:11









        trancelocationtrancelocation

        9,8101722




        9,8101722






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057643%2fcompute-lim-limits-x-to0-left-sin-x-cos-x-right1-x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            張江高科駅