Compute $limlimits_{xto0} left(sin x + cos xright)^{1/x}$
$begingroup$
I hit a snag while solving exponential functions whose limits are given.
Question:
$$lim_{xto0} left(sin x + cos xright)^left(1/xright)$$
My Approach:
I am using the followin relation to solve the question of these type.
$$lim_{xto0} left(1 + xright)^left(1/xright) = e qquad(2)$$
But now how should i convert my above question so that i can apply the rule as mentioned in $(2)$.
Conclusion:
First of all help will be appreciated.
Second how to solve functions of such kind in a quick method.
Thanks,
P.S.(Feel free to edit my question if you find any errors or mistakes in my question)
limits
$endgroup$
add a comment |
$begingroup$
I hit a snag while solving exponential functions whose limits are given.
Question:
$$lim_{xto0} left(sin x + cos xright)^left(1/xright)$$
My Approach:
I am using the followin relation to solve the question of these type.
$$lim_{xto0} left(1 + xright)^left(1/xright) = e qquad(2)$$
But now how should i convert my above question so that i can apply the rule as mentioned in $(2)$.
Conclusion:
First of all help will be appreciated.
Second how to solve functions of such kind in a quick method.
Thanks,
P.S.(Feel free to edit my question if you find any errors or mistakes in my question)
limits
$endgroup$
$begingroup$
@Crostul The LH step in this case would be absurd, as in every situation where one is after a limit $limlimits_{xto0}g(x)/x$ with $g$ differentiable at $0$ and $g(0)=0$.
$endgroup$
– Did
Dec 31 '18 at 12:10
$begingroup$
@Did , please elaborate why would the LH step be absurd?
$endgroup$
– Gingitsune
Dec 31 '18 at 12:24
2
$begingroup$
Because using LH to find $limlimits_{xto0} g(x)/h(x)$ when $g(0)=h(0)=0$ requires to compute $g'(0)$ and $h'(0)$. But, in the case when $h(x)=x$, one already knows that $limlimits_{xto0}g(x)/x=g'(0)$ by definition of the derivative of $g$ since $g(x)/x=(g(x)-g(0))/(x-0)$. So, invoking LH here amounts to a beautifully (?) absurd logical circle.
$endgroup$
– Did
Dec 31 '18 at 12:29
add a comment |
$begingroup$
I hit a snag while solving exponential functions whose limits are given.
Question:
$$lim_{xto0} left(sin x + cos xright)^left(1/xright)$$
My Approach:
I am using the followin relation to solve the question of these type.
$$lim_{xto0} left(1 + xright)^left(1/xright) = e qquad(2)$$
But now how should i convert my above question so that i can apply the rule as mentioned in $(2)$.
Conclusion:
First of all help will be appreciated.
Second how to solve functions of such kind in a quick method.
Thanks,
P.S.(Feel free to edit my question if you find any errors or mistakes in my question)
limits
$endgroup$
I hit a snag while solving exponential functions whose limits are given.
Question:
$$lim_{xto0} left(sin x + cos xright)^left(1/xright)$$
My Approach:
I am using the followin relation to solve the question of these type.
$$lim_{xto0} left(1 + xright)^left(1/xright) = e qquad(2)$$
But now how should i convert my above question so that i can apply the rule as mentioned in $(2)$.
Conclusion:
First of all help will be appreciated.
Second how to solve functions of such kind in a quick method.
Thanks,
P.S.(Feel free to edit my question if you find any errors or mistakes in my question)
limits
limits
edited Dec 31 '18 at 14:17
Fortox
657
657
asked Dec 31 '18 at 12:04
GingitsuneGingitsune
247
247
$begingroup$
@Crostul The LH step in this case would be absurd, as in every situation where one is after a limit $limlimits_{xto0}g(x)/x$ with $g$ differentiable at $0$ and $g(0)=0$.
$endgroup$
– Did
Dec 31 '18 at 12:10
$begingroup$
@Did , please elaborate why would the LH step be absurd?
$endgroup$
– Gingitsune
Dec 31 '18 at 12:24
2
$begingroup$
Because using LH to find $limlimits_{xto0} g(x)/h(x)$ when $g(0)=h(0)=0$ requires to compute $g'(0)$ and $h'(0)$. But, in the case when $h(x)=x$, one already knows that $limlimits_{xto0}g(x)/x=g'(0)$ by definition of the derivative of $g$ since $g(x)/x=(g(x)-g(0))/(x-0)$. So, invoking LH here amounts to a beautifully (?) absurd logical circle.
$endgroup$
– Did
Dec 31 '18 at 12:29
add a comment |
$begingroup$
@Crostul The LH step in this case would be absurd, as in every situation where one is after a limit $limlimits_{xto0}g(x)/x$ with $g$ differentiable at $0$ and $g(0)=0$.
$endgroup$
– Did
Dec 31 '18 at 12:10
$begingroup$
@Did , please elaborate why would the LH step be absurd?
$endgroup$
– Gingitsune
Dec 31 '18 at 12:24
2
$begingroup$
Because using LH to find $limlimits_{xto0} g(x)/h(x)$ when $g(0)=h(0)=0$ requires to compute $g'(0)$ and $h'(0)$. But, in the case when $h(x)=x$, one already knows that $limlimits_{xto0}g(x)/x=g'(0)$ by definition of the derivative of $g$ since $g(x)/x=(g(x)-g(0))/(x-0)$. So, invoking LH here amounts to a beautifully (?) absurd logical circle.
$endgroup$
– Did
Dec 31 '18 at 12:29
$begingroup$
@Crostul The LH step in this case would be absurd, as in every situation where one is after a limit $limlimits_{xto0}g(x)/x$ with $g$ differentiable at $0$ and $g(0)=0$.
$endgroup$
– Did
Dec 31 '18 at 12:10
$begingroup$
@Crostul The LH step in this case would be absurd, as in every situation where one is after a limit $limlimits_{xto0}g(x)/x$ with $g$ differentiable at $0$ and $g(0)=0$.
$endgroup$
– Did
Dec 31 '18 at 12:10
$begingroup$
@Did , please elaborate why would the LH step be absurd?
$endgroup$
– Gingitsune
Dec 31 '18 at 12:24
$begingroup$
@Did , please elaborate why would the LH step be absurd?
$endgroup$
– Gingitsune
Dec 31 '18 at 12:24
2
2
$begingroup$
Because using LH to find $limlimits_{xto0} g(x)/h(x)$ when $g(0)=h(0)=0$ requires to compute $g'(0)$ and $h'(0)$. But, in the case when $h(x)=x$, one already knows that $limlimits_{xto0}g(x)/x=g'(0)$ by definition of the derivative of $g$ since $g(x)/x=(g(x)-g(0))/(x-0)$. So, invoking LH here amounts to a beautifully (?) absurd logical circle.
$endgroup$
– Did
Dec 31 '18 at 12:29
$begingroup$
Because using LH to find $limlimits_{xto0} g(x)/h(x)$ when $g(0)=h(0)=0$ requires to compute $g'(0)$ and $h'(0)$. But, in the case when $h(x)=x$, one already knows that $limlimits_{xto0}g(x)/x=g'(0)$ by definition of the derivative of $g$ since $g(x)/x=(g(x)-g(0))/(x-0)$. So, invoking LH here amounts to a beautifully (?) absurd logical circle.
$endgroup$
– Did
Dec 31 '18 at 12:29
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
In this case the best idea is take logarithm, and then use De l'Hopital. $$lim_{x to 0} frac{ln (sin x + cos x)}{x} = lim_{x to 0} frac{cos x - sin x}{sin x + cos x} = 1$$ Hence the answer is $e^{1}=e$.
$endgroup$
$begingroup$
See comment on main.
$endgroup$
– Did
Dec 31 '18 at 12:10
1
$begingroup$
It isn't $e^{-1}$ anyway
$endgroup$
– Kenny Lau
Dec 31 '18 at 12:19
2
$begingroup$
@Crostul , When apply the $lim_{xto0}$ shouldn't the answer be $1$ ?
$endgroup$
– Gingitsune
Dec 31 '18 at 12:21
add a comment |
$begingroup$
Alternatively, take $cos x$ out:
$$lim_{xto0} left(sin x + cos xright)^left(1/xright)=\
lim_{xto0} left(cos xright)^left(1/xright)cdot lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)}cdot color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)}=color{blue}1cdot color{red}e=e,$$
because using the relation you want:
$$color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)=\
lim_{xto0} left[left(1+left(-2sin^2 frac x2right)right)^frac{1}{-2sin^2 frac x2}right]^{frac{-2sin^2 frac x2}{x}}=e^0=1};\
color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
lim_{xto0} left[left(1+frac{sin x}{cos x}right)^{frac{cos x}{sin x}}right]^frac{sin x}{xcos x}=e^1=e}.$$
$endgroup$
$begingroup$
thanks you helped me find one more way to approach questions of this kind
$endgroup$
– Gingitsune
Jan 1 at 12:06
add a comment |
$begingroup$
Another standard way works with enforcing a $color{red}{1}$ in the basis and considering the resulting exponent:
begin{eqnarray*} left(sin x + cos xright)^{1/x}
& = & left( color{red}{1} + (color{blue}{sin x + cos x - 1})right)^{1/x}\
& = & left (left( 1 + (color{blue}{sin x + cos x - 1})right)^{1/(color{blue}{sin x + cos x - 1})}right)^{frac{color{blue}{sin x + cos x - 1}}{x}} \
& stackrel {x to 0}{longrightarrow} & e^{lim_{xto 0}frac{sin x + cos x - 1}{x}}\
& = & e^{1+cos'(0)} = e \
end{eqnarray*}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057643%2fcompute-lim-limits-x-to0-left-sin-x-cos-x-right1-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In this case the best idea is take logarithm, and then use De l'Hopital. $$lim_{x to 0} frac{ln (sin x + cos x)}{x} = lim_{x to 0} frac{cos x - sin x}{sin x + cos x} = 1$$ Hence the answer is $e^{1}=e$.
$endgroup$
$begingroup$
See comment on main.
$endgroup$
– Did
Dec 31 '18 at 12:10
1
$begingroup$
It isn't $e^{-1}$ anyway
$endgroup$
– Kenny Lau
Dec 31 '18 at 12:19
2
$begingroup$
@Crostul , When apply the $lim_{xto0}$ shouldn't the answer be $1$ ?
$endgroup$
– Gingitsune
Dec 31 '18 at 12:21
add a comment |
$begingroup$
In this case the best idea is take logarithm, and then use De l'Hopital. $$lim_{x to 0} frac{ln (sin x + cos x)}{x} = lim_{x to 0} frac{cos x - sin x}{sin x + cos x} = 1$$ Hence the answer is $e^{1}=e$.
$endgroup$
$begingroup$
See comment on main.
$endgroup$
– Did
Dec 31 '18 at 12:10
1
$begingroup$
It isn't $e^{-1}$ anyway
$endgroup$
– Kenny Lau
Dec 31 '18 at 12:19
2
$begingroup$
@Crostul , When apply the $lim_{xto0}$ shouldn't the answer be $1$ ?
$endgroup$
– Gingitsune
Dec 31 '18 at 12:21
add a comment |
$begingroup$
In this case the best idea is take logarithm, and then use De l'Hopital. $$lim_{x to 0} frac{ln (sin x + cos x)}{x} = lim_{x to 0} frac{cos x - sin x}{sin x + cos x} = 1$$ Hence the answer is $e^{1}=e$.
$endgroup$
In this case the best idea is take logarithm, and then use De l'Hopital. $$lim_{x to 0} frac{ln (sin x + cos x)}{x} = lim_{x to 0} frac{cos x - sin x}{sin x + cos x} = 1$$ Hence the answer is $e^{1}=e$.
edited Dec 31 '18 at 12:40
answered Dec 31 '18 at 12:08
CrostulCrostul
27.8k22352
27.8k22352
$begingroup$
See comment on main.
$endgroup$
– Did
Dec 31 '18 at 12:10
1
$begingroup$
It isn't $e^{-1}$ anyway
$endgroup$
– Kenny Lau
Dec 31 '18 at 12:19
2
$begingroup$
@Crostul , When apply the $lim_{xto0}$ shouldn't the answer be $1$ ?
$endgroup$
– Gingitsune
Dec 31 '18 at 12:21
add a comment |
$begingroup$
See comment on main.
$endgroup$
– Did
Dec 31 '18 at 12:10
1
$begingroup$
It isn't $e^{-1}$ anyway
$endgroup$
– Kenny Lau
Dec 31 '18 at 12:19
2
$begingroup$
@Crostul , When apply the $lim_{xto0}$ shouldn't the answer be $1$ ?
$endgroup$
– Gingitsune
Dec 31 '18 at 12:21
$begingroup$
See comment on main.
$endgroup$
– Did
Dec 31 '18 at 12:10
$begingroup$
See comment on main.
$endgroup$
– Did
Dec 31 '18 at 12:10
1
1
$begingroup$
It isn't $e^{-1}$ anyway
$endgroup$
– Kenny Lau
Dec 31 '18 at 12:19
$begingroup$
It isn't $e^{-1}$ anyway
$endgroup$
– Kenny Lau
Dec 31 '18 at 12:19
2
2
$begingroup$
@Crostul , When apply the $lim_{xto0}$ shouldn't the answer be $1$ ?
$endgroup$
– Gingitsune
Dec 31 '18 at 12:21
$begingroup$
@Crostul , When apply the $lim_{xto0}$ shouldn't the answer be $1$ ?
$endgroup$
– Gingitsune
Dec 31 '18 at 12:21
add a comment |
$begingroup$
Alternatively, take $cos x$ out:
$$lim_{xto0} left(sin x + cos xright)^left(1/xright)=\
lim_{xto0} left(cos xright)^left(1/xright)cdot lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)}cdot color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)}=color{blue}1cdot color{red}e=e,$$
because using the relation you want:
$$color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)=\
lim_{xto0} left[left(1+left(-2sin^2 frac x2right)right)^frac{1}{-2sin^2 frac x2}right]^{frac{-2sin^2 frac x2}{x}}=e^0=1};\
color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
lim_{xto0} left[left(1+frac{sin x}{cos x}right)^{frac{cos x}{sin x}}right]^frac{sin x}{xcos x}=e^1=e}.$$
$endgroup$
$begingroup$
thanks you helped me find one more way to approach questions of this kind
$endgroup$
– Gingitsune
Jan 1 at 12:06
add a comment |
$begingroup$
Alternatively, take $cos x$ out:
$$lim_{xto0} left(sin x + cos xright)^left(1/xright)=\
lim_{xto0} left(cos xright)^left(1/xright)cdot lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)}cdot color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)}=color{blue}1cdot color{red}e=e,$$
because using the relation you want:
$$color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)=\
lim_{xto0} left[left(1+left(-2sin^2 frac x2right)right)^frac{1}{-2sin^2 frac x2}right]^{frac{-2sin^2 frac x2}{x}}=e^0=1};\
color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
lim_{xto0} left[left(1+frac{sin x}{cos x}right)^{frac{cos x}{sin x}}right]^frac{sin x}{xcos x}=e^1=e}.$$
$endgroup$
$begingroup$
thanks you helped me find one more way to approach questions of this kind
$endgroup$
– Gingitsune
Jan 1 at 12:06
add a comment |
$begingroup$
Alternatively, take $cos x$ out:
$$lim_{xto0} left(sin x + cos xright)^left(1/xright)=\
lim_{xto0} left(cos xright)^left(1/xright)cdot lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)}cdot color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)}=color{blue}1cdot color{red}e=e,$$
because using the relation you want:
$$color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)=\
lim_{xto0} left[left(1+left(-2sin^2 frac x2right)right)^frac{1}{-2sin^2 frac x2}right]^{frac{-2sin^2 frac x2}{x}}=e^0=1};\
color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
lim_{xto0} left[left(1+frac{sin x}{cos x}right)^{frac{cos x}{sin x}}right]^frac{sin x}{xcos x}=e^1=e}.$$
$endgroup$
Alternatively, take $cos x$ out:
$$lim_{xto0} left(sin x + cos xright)^left(1/xright)=\
lim_{xto0} left(cos xright)^left(1/xright)cdot lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)}cdot color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)}=color{blue}1cdot color{red}e=e,$$
because using the relation you want:
$$color{blue}{lim_{xto0} left(1-2sin^2 frac x2right)^left(1/xright)=\
lim_{xto0} left[left(1+left(-2sin^2 frac x2right)right)^frac{1}{-2sin^2 frac x2}right]^{frac{-2sin^2 frac x2}{x}}=e^0=1};\
color{red}{lim_{xto0} left(1+frac{sin x}{cos x}right)^left(1/xright)=\
lim_{xto0} left[left(1+frac{sin x}{cos x}right)^{frac{cos x}{sin x}}right]^frac{sin x}{xcos x}=e^1=e}.$$
answered Jan 1 at 10:05
farruhotafarruhota
19.7k2738
19.7k2738
$begingroup$
thanks you helped me find one more way to approach questions of this kind
$endgroup$
– Gingitsune
Jan 1 at 12:06
add a comment |
$begingroup$
thanks you helped me find one more way to approach questions of this kind
$endgroup$
– Gingitsune
Jan 1 at 12:06
$begingroup$
thanks you helped me find one more way to approach questions of this kind
$endgroup$
– Gingitsune
Jan 1 at 12:06
$begingroup$
thanks you helped me find one more way to approach questions of this kind
$endgroup$
– Gingitsune
Jan 1 at 12:06
add a comment |
$begingroup$
Another standard way works with enforcing a $color{red}{1}$ in the basis and considering the resulting exponent:
begin{eqnarray*} left(sin x + cos xright)^{1/x}
& = & left( color{red}{1} + (color{blue}{sin x + cos x - 1})right)^{1/x}\
& = & left (left( 1 + (color{blue}{sin x + cos x - 1})right)^{1/(color{blue}{sin x + cos x - 1})}right)^{frac{color{blue}{sin x + cos x - 1}}{x}} \
& stackrel {x to 0}{longrightarrow} & e^{lim_{xto 0}frac{sin x + cos x - 1}{x}}\
& = & e^{1+cos'(0)} = e \
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
Another standard way works with enforcing a $color{red}{1}$ in the basis and considering the resulting exponent:
begin{eqnarray*} left(sin x + cos xright)^{1/x}
& = & left( color{red}{1} + (color{blue}{sin x + cos x - 1})right)^{1/x}\
& = & left (left( 1 + (color{blue}{sin x + cos x - 1})right)^{1/(color{blue}{sin x + cos x - 1})}right)^{frac{color{blue}{sin x + cos x - 1}}{x}} \
& stackrel {x to 0}{longrightarrow} & e^{lim_{xto 0}frac{sin x + cos x - 1}{x}}\
& = & e^{1+cos'(0)} = e \
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
Another standard way works with enforcing a $color{red}{1}$ in the basis and considering the resulting exponent:
begin{eqnarray*} left(sin x + cos xright)^{1/x}
& = & left( color{red}{1} + (color{blue}{sin x + cos x - 1})right)^{1/x}\
& = & left (left( 1 + (color{blue}{sin x + cos x - 1})right)^{1/(color{blue}{sin x + cos x - 1})}right)^{frac{color{blue}{sin x + cos x - 1}}{x}} \
& stackrel {x to 0}{longrightarrow} & e^{lim_{xto 0}frac{sin x + cos x - 1}{x}}\
& = & e^{1+cos'(0)} = e \
end{eqnarray*}
$endgroup$
Another standard way works with enforcing a $color{red}{1}$ in the basis and considering the resulting exponent:
begin{eqnarray*} left(sin x + cos xright)^{1/x}
& = & left( color{red}{1} + (color{blue}{sin x + cos x - 1})right)^{1/x}\
& = & left (left( 1 + (color{blue}{sin x + cos x - 1})right)^{1/(color{blue}{sin x + cos x - 1})}right)^{frac{color{blue}{sin x + cos x - 1}}{x}} \
& stackrel {x to 0}{longrightarrow} & e^{lim_{xto 0}frac{sin x + cos x - 1}{x}}\
& = & e^{1+cos'(0)} = e \
end{eqnarray*}
answered Jan 1 at 6:11
trancelocationtrancelocation
9,8101722
9,8101722
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057643%2fcompute-lim-limits-x-to0-left-sin-x-cos-x-right1-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@Crostul The LH step in this case would be absurd, as in every situation where one is after a limit $limlimits_{xto0}g(x)/x$ with $g$ differentiable at $0$ and $g(0)=0$.
$endgroup$
– Did
Dec 31 '18 at 12:10
$begingroup$
@Did , please elaborate why would the LH step be absurd?
$endgroup$
– Gingitsune
Dec 31 '18 at 12:24
2
$begingroup$
Because using LH to find $limlimits_{xto0} g(x)/h(x)$ when $g(0)=h(0)=0$ requires to compute $g'(0)$ and $h'(0)$. But, in the case when $h(x)=x$, one already knows that $limlimits_{xto0}g(x)/x=g'(0)$ by definition of the derivative of $g$ since $g(x)/x=(g(x)-g(0))/(x-0)$. So, invoking LH here amounts to a beautifully (?) absurd logical circle.
$endgroup$
– Did
Dec 31 '18 at 12:29