Fourier series of $(-1)^{[x]}$












0












$begingroup$


I've been trying to find the Fourier series of $f(x)=(-1)^{[x]}$ ($[x]$ is the floor function) on $[-2,2]$.



I've drawn the graph and noticed that $f$ is odd and therefore $a_n = 0, forall n in mathbb{N}$. Calculating the coefficient $b_n$ resulted in $b_n = frac{2}{npi}left(-2cos(frac{npi}{2}) + 1 + (-1)^nright)$. However when plotting the series, I does not look like $f(x)=(-1)^{[x]} $. How can I best approach finding Fourier series for this type of functions?










share|cite|improve this question









$endgroup$












  • $begingroup$
    $f$ is odd $2$-periodic so $a_n=0$, $b_n = frac{1}{2} int_{-1}^1 f(x) sin(2 pi n x/2)dx= int_0^1 sin(2 pi n x/2)dx = ?$
    $endgroup$
    – reuns
    Jan 13 at 13:49












  • $begingroup$
    Why do you have $sin(2pi nx/2)$? I don't see where the first $2$ comes from.
    $endgroup$
    – Zachary
    Jan 13 at 14:12










  • $begingroup$
    $b_n = int_{-1}^1 f(x) sin(2 pi n x/2)dx= int_0^1 sin(2 pi n x/2)dx = ?$ then $f(x) = sum_{n ge 1} b_n sin(2pi n x/2)$
    $endgroup$
    – reuns
    Jan 13 at 14:41












  • $begingroup$
    But why do you use $2pi n x/2$ for the argument of $sin$, instead of $pi n x/2$. (Formula: $b_ n = frac1L int_{-L}^L f(x) sin (n pi x/L) $).
    $endgroup$
    – Zachary
    Jan 13 at 14:45












  • $begingroup$
    Has it something to do with the period of $f$?
    $endgroup$
    – Zachary
    Jan 13 at 14:46
















0












$begingroup$


I've been trying to find the Fourier series of $f(x)=(-1)^{[x]}$ ($[x]$ is the floor function) on $[-2,2]$.



I've drawn the graph and noticed that $f$ is odd and therefore $a_n = 0, forall n in mathbb{N}$. Calculating the coefficient $b_n$ resulted in $b_n = frac{2}{npi}left(-2cos(frac{npi}{2}) + 1 + (-1)^nright)$. However when plotting the series, I does not look like $f(x)=(-1)^{[x]} $. How can I best approach finding Fourier series for this type of functions?










share|cite|improve this question









$endgroup$












  • $begingroup$
    $f$ is odd $2$-periodic so $a_n=0$, $b_n = frac{1}{2} int_{-1}^1 f(x) sin(2 pi n x/2)dx= int_0^1 sin(2 pi n x/2)dx = ?$
    $endgroup$
    – reuns
    Jan 13 at 13:49












  • $begingroup$
    Why do you have $sin(2pi nx/2)$? I don't see where the first $2$ comes from.
    $endgroup$
    – Zachary
    Jan 13 at 14:12










  • $begingroup$
    $b_n = int_{-1}^1 f(x) sin(2 pi n x/2)dx= int_0^1 sin(2 pi n x/2)dx = ?$ then $f(x) = sum_{n ge 1} b_n sin(2pi n x/2)$
    $endgroup$
    – reuns
    Jan 13 at 14:41












  • $begingroup$
    But why do you use $2pi n x/2$ for the argument of $sin$, instead of $pi n x/2$. (Formula: $b_ n = frac1L int_{-L}^L f(x) sin (n pi x/L) $).
    $endgroup$
    – Zachary
    Jan 13 at 14:45












  • $begingroup$
    Has it something to do with the period of $f$?
    $endgroup$
    – Zachary
    Jan 13 at 14:46














0












0








0





$begingroup$


I've been trying to find the Fourier series of $f(x)=(-1)^{[x]}$ ($[x]$ is the floor function) on $[-2,2]$.



I've drawn the graph and noticed that $f$ is odd and therefore $a_n = 0, forall n in mathbb{N}$. Calculating the coefficient $b_n$ resulted in $b_n = frac{2}{npi}left(-2cos(frac{npi}{2}) + 1 + (-1)^nright)$. However when plotting the series, I does not look like $f(x)=(-1)^{[x]} $. How can I best approach finding Fourier series for this type of functions?










share|cite|improve this question









$endgroup$




I've been trying to find the Fourier series of $f(x)=(-1)^{[x]}$ ($[x]$ is the floor function) on $[-2,2]$.



I've drawn the graph and noticed that $f$ is odd and therefore $a_n = 0, forall n in mathbb{N}$. Calculating the coefficient $b_n$ resulted in $b_n = frac{2}{npi}left(-2cos(frac{npi}{2}) + 1 + (-1)^nright)$. However when plotting the series, I does not look like $f(x)=(-1)^{[x]} $. How can I best approach finding Fourier series for this type of functions?







real-analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 13 at 13:25









ZacharyZachary

1799




1799












  • $begingroup$
    $f$ is odd $2$-periodic so $a_n=0$, $b_n = frac{1}{2} int_{-1}^1 f(x) sin(2 pi n x/2)dx= int_0^1 sin(2 pi n x/2)dx = ?$
    $endgroup$
    – reuns
    Jan 13 at 13:49












  • $begingroup$
    Why do you have $sin(2pi nx/2)$? I don't see where the first $2$ comes from.
    $endgroup$
    – Zachary
    Jan 13 at 14:12










  • $begingroup$
    $b_n = int_{-1}^1 f(x) sin(2 pi n x/2)dx= int_0^1 sin(2 pi n x/2)dx = ?$ then $f(x) = sum_{n ge 1} b_n sin(2pi n x/2)$
    $endgroup$
    – reuns
    Jan 13 at 14:41












  • $begingroup$
    But why do you use $2pi n x/2$ for the argument of $sin$, instead of $pi n x/2$. (Formula: $b_ n = frac1L int_{-L}^L f(x) sin (n pi x/L) $).
    $endgroup$
    – Zachary
    Jan 13 at 14:45












  • $begingroup$
    Has it something to do with the period of $f$?
    $endgroup$
    – Zachary
    Jan 13 at 14:46


















  • $begingroup$
    $f$ is odd $2$-periodic so $a_n=0$, $b_n = frac{1}{2} int_{-1}^1 f(x) sin(2 pi n x/2)dx= int_0^1 sin(2 pi n x/2)dx = ?$
    $endgroup$
    – reuns
    Jan 13 at 13:49












  • $begingroup$
    Why do you have $sin(2pi nx/2)$? I don't see where the first $2$ comes from.
    $endgroup$
    – Zachary
    Jan 13 at 14:12










  • $begingroup$
    $b_n = int_{-1}^1 f(x) sin(2 pi n x/2)dx= int_0^1 sin(2 pi n x/2)dx = ?$ then $f(x) = sum_{n ge 1} b_n sin(2pi n x/2)$
    $endgroup$
    – reuns
    Jan 13 at 14:41












  • $begingroup$
    But why do you use $2pi n x/2$ for the argument of $sin$, instead of $pi n x/2$. (Formula: $b_ n = frac1L int_{-L}^L f(x) sin (n pi x/L) $).
    $endgroup$
    – Zachary
    Jan 13 at 14:45












  • $begingroup$
    Has it something to do with the period of $f$?
    $endgroup$
    – Zachary
    Jan 13 at 14:46
















$begingroup$
$f$ is odd $2$-periodic so $a_n=0$, $b_n = frac{1}{2} int_{-1}^1 f(x) sin(2 pi n x/2)dx= int_0^1 sin(2 pi n x/2)dx = ?$
$endgroup$
– reuns
Jan 13 at 13:49






$begingroup$
$f$ is odd $2$-periodic so $a_n=0$, $b_n = frac{1}{2} int_{-1}^1 f(x) sin(2 pi n x/2)dx= int_0^1 sin(2 pi n x/2)dx = ?$
$endgroup$
– reuns
Jan 13 at 13:49














$begingroup$
Why do you have $sin(2pi nx/2)$? I don't see where the first $2$ comes from.
$endgroup$
– Zachary
Jan 13 at 14:12




$begingroup$
Why do you have $sin(2pi nx/2)$? I don't see where the first $2$ comes from.
$endgroup$
– Zachary
Jan 13 at 14:12












$begingroup$
$b_n = int_{-1}^1 f(x) sin(2 pi n x/2)dx= int_0^1 sin(2 pi n x/2)dx = ?$ then $f(x) = sum_{n ge 1} b_n sin(2pi n x/2)$
$endgroup$
– reuns
Jan 13 at 14:41






$begingroup$
$b_n = int_{-1}^1 f(x) sin(2 pi n x/2)dx= int_0^1 sin(2 pi n x/2)dx = ?$ then $f(x) = sum_{n ge 1} b_n sin(2pi n x/2)$
$endgroup$
– reuns
Jan 13 at 14:41














$begingroup$
But why do you use $2pi n x/2$ for the argument of $sin$, instead of $pi n x/2$. (Formula: $b_ n = frac1L int_{-L}^L f(x) sin (n pi x/L) $).
$endgroup$
– Zachary
Jan 13 at 14:45






$begingroup$
But why do you use $2pi n x/2$ for the argument of $sin$, instead of $pi n x/2$. (Formula: $b_ n = frac1L int_{-L}^L f(x) sin (n pi x/L) $).
$endgroup$
– Zachary
Jan 13 at 14:45














$begingroup$
Has it something to do with the period of $f$?
$endgroup$
– Zachary
Jan 13 at 14:46




$begingroup$
Has it something to do with the period of $f$?
$endgroup$
– Zachary
Jan 13 at 14:46










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072004%2ffourier-series-of-1x%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072004%2ffourier-series-of-1x%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅