Laurent series of $frac{z}{sin({frac{pi}{z+1}})}$ in the roots of the denominator












1












$begingroup$


I'd like to compute the first few terms of the Laurent series of $frac{z}{sin(frac{pi}{z+1})}$ at $z=frac{1}{k}-1, kinmathbb{Z}$.
I assume I know the espansion of $frac{1}{sin{z}}$ in $z=0$, so i'm trying to express $frac{pi}{z+1}$ in terms of $[z-(frac{1}{k}-1)], kinmathbb{Z}$, but I can't get anything useful to be put in the expansion of $frac{1}{sin{z}}$.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I'd like to compute the first few terms of the Laurent series of $frac{z}{sin(frac{pi}{z+1})}$ at $z=frac{1}{k}-1, kinmathbb{Z}$.
    I assume I know the espansion of $frac{1}{sin{z}}$ in $z=0$, so i'm trying to express $frac{pi}{z+1}$ in terms of $[z-(frac{1}{k}-1)], kinmathbb{Z}$, but I can't get anything useful to be put in the expansion of $frac{1}{sin{z}}$.










    share|cite|improve this question









    $endgroup$















      1












      1








      1


      1



      $begingroup$


      I'd like to compute the first few terms of the Laurent series of $frac{z}{sin(frac{pi}{z+1})}$ at $z=frac{1}{k}-1, kinmathbb{Z}$.
      I assume I know the espansion of $frac{1}{sin{z}}$ in $z=0$, so i'm trying to express $frac{pi}{z+1}$ in terms of $[z-(frac{1}{k}-1)], kinmathbb{Z}$, but I can't get anything useful to be put in the expansion of $frac{1}{sin{z}}$.










      share|cite|improve this question









      $endgroup$




      I'd like to compute the first few terms of the Laurent series of $frac{z}{sin(frac{pi}{z+1})}$ at $z=frac{1}{k}-1, kinmathbb{Z}$.
      I assume I know the espansion of $frac{1}{sin{z}}$ in $z=0$, so i'm trying to express $frac{pi}{z+1}$ in terms of $[z-(frac{1}{k}-1)], kinmathbb{Z}$, but I can't get anything useful to be put in the expansion of $frac{1}{sin{z}}$.







      complex-analysis laurent-series






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 8 at 12:40









      EugenioDiPaolaEugenioDiPaola

      515




      515






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Hint:



          Let $z=w+left(frac1k-1right)$ then
          $$
          f(z)=F(w)=frac{w+left(frac1k-1right)}{sinleft(frac{pi}{w+frac1k}right)}=frac{w+left(frac1k-1right)}{sinleft(frac{kpi}{1+kw}right)}
          $$

          Now recall that the expansion of $kpi(1+kw)^{-1}$ at $0$: for $|w|<frac1k$,
          $$
          frac{kpi}{1+kw}=kpisum_{n=0}^{infty} (-1)^n k^nw^n=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n
          $$

          and, for $v in mathbb{C}$,
          $$
          sin(v)=v-frac{v^3}{3!}+frac{v^5}{5!}-dotstag{1}
          $$

          Can you take it from here?






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            not really, either if I use $1/sin{x}=1/x+x/6+7/360x^3+O{x^5}$ and then expand the geometric series or if I expand the the geometric series and the $sin$ at denominator for the first few terms and then perform long division I only seem to get powers of w with positive exponent. Could you please write some more of what you meant to do?
            $endgroup$
            – EugenioDiPaola
            Jan 9 at 8:37












          • $begingroup$
            @EugenioDiPaola Let $$v:=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n$$ and then plug it in equation $(1)$ of my answer.
            $endgroup$
            – Jevaut
            Jan 9 at 16:16










          • $begingroup$
            $$sin{left(frac{kpi}{1-(-kw)}right)}=sin{left[kpi^2sum_{n=0}^{infty}{(-1)^n k^{n+1}w^n}right]}={kpi^2left[k-k^2 w+O(w^2)right]-frac{k^3pi^6}{6^3}left[k-k^2 w+O(w^2)right]^3+kpi^2 O[(k-k^2 w+O(w^2))^5]} =kpi+k^6 frac{pi^6}{6^3}+O(k^5)$$, which doesn't contain any $w$
            $endgroup$
            – EugenioDiPaola
            Jan 15 at 13:37













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066119%2flaurent-series-of-fracz-sin-frac-piz1-in-the-roots-of-the-denomi%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Hint:



          Let $z=w+left(frac1k-1right)$ then
          $$
          f(z)=F(w)=frac{w+left(frac1k-1right)}{sinleft(frac{pi}{w+frac1k}right)}=frac{w+left(frac1k-1right)}{sinleft(frac{kpi}{1+kw}right)}
          $$

          Now recall that the expansion of $kpi(1+kw)^{-1}$ at $0$: for $|w|<frac1k$,
          $$
          frac{kpi}{1+kw}=kpisum_{n=0}^{infty} (-1)^n k^nw^n=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n
          $$

          and, for $v in mathbb{C}$,
          $$
          sin(v)=v-frac{v^3}{3!}+frac{v^5}{5!}-dotstag{1}
          $$

          Can you take it from here?






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            not really, either if I use $1/sin{x}=1/x+x/6+7/360x^3+O{x^5}$ and then expand the geometric series or if I expand the the geometric series and the $sin$ at denominator for the first few terms and then perform long division I only seem to get powers of w with positive exponent. Could you please write some more of what you meant to do?
            $endgroup$
            – EugenioDiPaola
            Jan 9 at 8:37












          • $begingroup$
            @EugenioDiPaola Let $$v:=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n$$ and then plug it in equation $(1)$ of my answer.
            $endgroup$
            – Jevaut
            Jan 9 at 16:16










          • $begingroup$
            $$sin{left(frac{kpi}{1-(-kw)}right)}=sin{left[kpi^2sum_{n=0}^{infty}{(-1)^n k^{n+1}w^n}right]}={kpi^2left[k-k^2 w+O(w^2)right]-frac{k^3pi^6}{6^3}left[k-k^2 w+O(w^2)right]^3+kpi^2 O[(k-k^2 w+O(w^2))^5]} =kpi+k^6 frac{pi^6}{6^3}+O(k^5)$$, which doesn't contain any $w$
            $endgroup$
            – EugenioDiPaola
            Jan 15 at 13:37


















          1












          $begingroup$

          Hint:



          Let $z=w+left(frac1k-1right)$ then
          $$
          f(z)=F(w)=frac{w+left(frac1k-1right)}{sinleft(frac{pi}{w+frac1k}right)}=frac{w+left(frac1k-1right)}{sinleft(frac{kpi}{1+kw}right)}
          $$

          Now recall that the expansion of $kpi(1+kw)^{-1}$ at $0$: for $|w|<frac1k$,
          $$
          frac{kpi}{1+kw}=kpisum_{n=0}^{infty} (-1)^n k^nw^n=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n
          $$

          and, for $v in mathbb{C}$,
          $$
          sin(v)=v-frac{v^3}{3!}+frac{v^5}{5!}-dotstag{1}
          $$

          Can you take it from here?






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            not really, either if I use $1/sin{x}=1/x+x/6+7/360x^3+O{x^5}$ and then expand the geometric series or if I expand the the geometric series and the $sin$ at denominator for the first few terms and then perform long division I only seem to get powers of w with positive exponent. Could you please write some more of what you meant to do?
            $endgroup$
            – EugenioDiPaola
            Jan 9 at 8:37












          • $begingroup$
            @EugenioDiPaola Let $$v:=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n$$ and then plug it in equation $(1)$ of my answer.
            $endgroup$
            – Jevaut
            Jan 9 at 16:16










          • $begingroup$
            $$sin{left(frac{kpi}{1-(-kw)}right)}=sin{left[kpi^2sum_{n=0}^{infty}{(-1)^n k^{n+1}w^n}right]}={kpi^2left[k-k^2 w+O(w^2)right]-frac{k^3pi^6}{6^3}left[k-k^2 w+O(w^2)right]^3+kpi^2 O[(k-k^2 w+O(w^2))^5]} =kpi+k^6 frac{pi^6}{6^3}+O(k^5)$$, which doesn't contain any $w$
            $endgroup$
            – EugenioDiPaola
            Jan 15 at 13:37
















          1












          1








          1





          $begingroup$

          Hint:



          Let $z=w+left(frac1k-1right)$ then
          $$
          f(z)=F(w)=frac{w+left(frac1k-1right)}{sinleft(frac{pi}{w+frac1k}right)}=frac{w+left(frac1k-1right)}{sinleft(frac{kpi}{1+kw}right)}
          $$

          Now recall that the expansion of $kpi(1+kw)^{-1}$ at $0$: for $|w|<frac1k$,
          $$
          frac{kpi}{1+kw}=kpisum_{n=0}^{infty} (-1)^n k^nw^n=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n
          $$

          and, for $v in mathbb{C}$,
          $$
          sin(v)=v-frac{v^3}{3!}+frac{v^5}{5!}-dotstag{1}
          $$

          Can you take it from here?






          share|cite|improve this answer











          $endgroup$



          Hint:



          Let $z=w+left(frac1k-1right)$ then
          $$
          f(z)=F(w)=frac{w+left(frac1k-1right)}{sinleft(frac{pi}{w+frac1k}right)}=frac{w+left(frac1k-1right)}{sinleft(frac{kpi}{1+kw}right)}
          $$

          Now recall that the expansion of $kpi(1+kw)^{-1}$ at $0$: for $|w|<frac1k$,
          $$
          frac{kpi}{1+kw}=kpisum_{n=0}^{infty} (-1)^n k^nw^n=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n
          $$

          and, for $v in mathbb{C}$,
          $$
          sin(v)=v-frac{v^3}{3!}+frac{v^5}{5!}-dotstag{1}
          $$

          Can you take it from here?







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 9 at 16:14

























          answered Jan 8 at 14:23









          JevautJevaut

          1,166212




          1,166212












          • $begingroup$
            not really, either if I use $1/sin{x}=1/x+x/6+7/360x^3+O{x^5}$ and then expand the geometric series or if I expand the the geometric series and the $sin$ at denominator for the first few terms and then perform long division I only seem to get powers of w with positive exponent. Could you please write some more of what you meant to do?
            $endgroup$
            – EugenioDiPaola
            Jan 9 at 8:37












          • $begingroup$
            @EugenioDiPaola Let $$v:=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n$$ and then plug it in equation $(1)$ of my answer.
            $endgroup$
            – Jevaut
            Jan 9 at 16:16










          • $begingroup$
            $$sin{left(frac{kpi}{1-(-kw)}right)}=sin{left[kpi^2sum_{n=0}^{infty}{(-1)^n k^{n+1}w^n}right]}={kpi^2left[k-k^2 w+O(w^2)right]-frac{k^3pi^6}{6^3}left[k-k^2 w+O(w^2)right]^3+kpi^2 O[(k-k^2 w+O(w^2))^5]} =kpi+k^6 frac{pi^6}{6^3}+O(k^5)$$, which doesn't contain any $w$
            $endgroup$
            – EugenioDiPaola
            Jan 15 at 13:37




















          • $begingroup$
            not really, either if I use $1/sin{x}=1/x+x/6+7/360x^3+O{x^5}$ and then expand the geometric series or if I expand the the geometric series and the $sin$ at denominator for the first few terms and then perform long division I only seem to get powers of w with positive exponent. Could you please write some more of what you meant to do?
            $endgroup$
            – EugenioDiPaola
            Jan 9 at 8:37












          • $begingroup$
            @EugenioDiPaola Let $$v:=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n$$ and then plug it in equation $(1)$ of my answer.
            $endgroup$
            – Jevaut
            Jan 9 at 16:16










          • $begingroup$
            $$sin{left(frac{kpi}{1-(-kw)}right)}=sin{left[kpi^2sum_{n=0}^{infty}{(-1)^n k^{n+1}w^n}right]}={kpi^2left[k-k^2 w+O(w^2)right]-frac{k^3pi^6}{6^3}left[k-k^2 w+O(w^2)right]^3+kpi^2 O[(k-k^2 w+O(w^2))^5]} =kpi+k^6 frac{pi^6}{6^3}+O(k^5)$$, which doesn't contain any $w$
            $endgroup$
            – EugenioDiPaola
            Jan 15 at 13:37


















          $begingroup$
          not really, either if I use $1/sin{x}=1/x+x/6+7/360x^3+O{x^5}$ and then expand the geometric series or if I expand the the geometric series and the $sin$ at denominator for the first few terms and then perform long division I only seem to get powers of w with positive exponent. Could you please write some more of what you meant to do?
          $endgroup$
          – EugenioDiPaola
          Jan 9 at 8:37






          $begingroup$
          not really, either if I use $1/sin{x}=1/x+x/6+7/360x^3+O{x^5}$ and then expand the geometric series or if I expand the the geometric series and the $sin$ at denominator for the first few terms and then perform long division I only seem to get powers of w with positive exponent. Could you please write some more of what you meant to do?
          $endgroup$
          – EugenioDiPaola
          Jan 9 at 8:37














          $begingroup$
          @EugenioDiPaola Let $$v:=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n$$ and then plug it in equation $(1)$ of my answer.
          $endgroup$
          – Jevaut
          Jan 9 at 16:16




          $begingroup$
          @EugenioDiPaola Let $$v:=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n$$ and then plug it in equation $(1)$ of my answer.
          $endgroup$
          – Jevaut
          Jan 9 at 16:16












          $begingroup$
          $$sin{left(frac{kpi}{1-(-kw)}right)}=sin{left[kpi^2sum_{n=0}^{infty}{(-1)^n k^{n+1}w^n}right]}={kpi^2left[k-k^2 w+O(w^2)right]-frac{k^3pi^6}{6^3}left[k-k^2 w+O(w^2)right]^3+kpi^2 O[(k-k^2 w+O(w^2))^5]} =kpi+k^6 frac{pi^6}{6^3}+O(k^5)$$, which doesn't contain any $w$
          $endgroup$
          – EugenioDiPaola
          Jan 15 at 13:37






          $begingroup$
          $$sin{left(frac{kpi}{1-(-kw)}right)}=sin{left[kpi^2sum_{n=0}^{infty}{(-1)^n k^{n+1}w^n}right]}={kpi^2left[k-k^2 w+O(w^2)right]-frac{k^3pi^6}{6^3}left[k-k^2 w+O(w^2)right]^3+kpi^2 O[(k-k^2 w+O(w^2))^5]} =kpi+k^6 frac{pi^6}{6^3}+O(k^5)$$, which doesn't contain any $w$
          $endgroup$
          – EugenioDiPaola
          Jan 15 at 13:37




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066119%2flaurent-series-of-fracz-sin-frac-piz1-in-the-roots-of-the-denomi%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Human spaceflight

          Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

          File:DeusFollowingSea.jpg