Laurent series of $frac{z}{sin({frac{pi}{z+1}})}$ in the roots of the denominator
$begingroup$
I'd like to compute the first few terms of the Laurent series of $frac{z}{sin(frac{pi}{z+1})}$ at $z=frac{1}{k}-1, kinmathbb{Z}$.
I assume I know the espansion of $frac{1}{sin{z}}$ in $z=0$, so i'm trying to express $frac{pi}{z+1}$ in terms of $[z-(frac{1}{k}-1)], kinmathbb{Z}$, but I can't get anything useful to be put in the expansion of $frac{1}{sin{z}}$.
complex-analysis laurent-series
$endgroup$
add a comment |
$begingroup$
I'd like to compute the first few terms of the Laurent series of $frac{z}{sin(frac{pi}{z+1})}$ at $z=frac{1}{k}-1, kinmathbb{Z}$.
I assume I know the espansion of $frac{1}{sin{z}}$ in $z=0$, so i'm trying to express $frac{pi}{z+1}$ in terms of $[z-(frac{1}{k}-1)], kinmathbb{Z}$, but I can't get anything useful to be put in the expansion of $frac{1}{sin{z}}$.
complex-analysis laurent-series
$endgroup$
add a comment |
$begingroup$
I'd like to compute the first few terms of the Laurent series of $frac{z}{sin(frac{pi}{z+1})}$ at $z=frac{1}{k}-1, kinmathbb{Z}$.
I assume I know the espansion of $frac{1}{sin{z}}$ in $z=0$, so i'm trying to express $frac{pi}{z+1}$ in terms of $[z-(frac{1}{k}-1)], kinmathbb{Z}$, but I can't get anything useful to be put in the expansion of $frac{1}{sin{z}}$.
complex-analysis laurent-series
$endgroup$
I'd like to compute the first few terms of the Laurent series of $frac{z}{sin(frac{pi}{z+1})}$ at $z=frac{1}{k}-1, kinmathbb{Z}$.
I assume I know the espansion of $frac{1}{sin{z}}$ in $z=0$, so i'm trying to express $frac{pi}{z+1}$ in terms of $[z-(frac{1}{k}-1)], kinmathbb{Z}$, but I can't get anything useful to be put in the expansion of $frac{1}{sin{z}}$.
complex-analysis laurent-series
complex-analysis laurent-series
asked Jan 8 at 12:40
EugenioDiPaolaEugenioDiPaola
515
515
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint:
Let $z=w+left(frac1k-1right)$ then
$$
f(z)=F(w)=frac{w+left(frac1k-1right)}{sinleft(frac{pi}{w+frac1k}right)}=frac{w+left(frac1k-1right)}{sinleft(frac{kpi}{1+kw}right)}
$$
Now recall that the expansion of $kpi(1+kw)^{-1}$ at $0$: for $|w|<frac1k$,
$$
frac{kpi}{1+kw}=kpisum_{n=0}^{infty} (-1)^n k^nw^n=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n
$$
and, for $v in mathbb{C}$,
$$
sin(v)=v-frac{v^3}{3!}+frac{v^5}{5!}-dotstag{1}
$$
Can you take it from here?
$endgroup$
$begingroup$
not really, either if I use $1/sin{x}=1/x+x/6+7/360x^3+O{x^5}$ and then expand the geometric series or if I expand the the geometric series and the $sin$ at denominator for the first few terms and then perform long division I only seem to get powers of w with positive exponent. Could you please write some more of what you meant to do?
$endgroup$
– EugenioDiPaola
Jan 9 at 8:37
$begingroup$
@EugenioDiPaola Let $$v:=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n$$ and then plug it in equation $(1)$ of my answer.
$endgroup$
– Jevaut
Jan 9 at 16:16
$begingroup$
$$sin{left(frac{kpi}{1-(-kw)}right)}=sin{left[kpi^2sum_{n=0}^{infty}{(-1)^n k^{n+1}w^n}right]}={kpi^2left[k-k^2 w+O(w^2)right]-frac{k^3pi^6}{6^3}left[k-k^2 w+O(w^2)right]^3+kpi^2 O[(k-k^2 w+O(w^2))^5]} =kpi+k^6 frac{pi^6}{6^3}+O(k^5)$$, which doesn't contain any $w$
$endgroup$
– EugenioDiPaola
Jan 15 at 13:37
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066119%2flaurent-series-of-fracz-sin-frac-piz1-in-the-roots-of-the-denomi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
Let $z=w+left(frac1k-1right)$ then
$$
f(z)=F(w)=frac{w+left(frac1k-1right)}{sinleft(frac{pi}{w+frac1k}right)}=frac{w+left(frac1k-1right)}{sinleft(frac{kpi}{1+kw}right)}
$$
Now recall that the expansion of $kpi(1+kw)^{-1}$ at $0$: for $|w|<frac1k$,
$$
frac{kpi}{1+kw}=kpisum_{n=0}^{infty} (-1)^n k^nw^n=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n
$$
and, for $v in mathbb{C}$,
$$
sin(v)=v-frac{v^3}{3!}+frac{v^5}{5!}-dotstag{1}
$$
Can you take it from here?
$endgroup$
$begingroup$
not really, either if I use $1/sin{x}=1/x+x/6+7/360x^3+O{x^5}$ and then expand the geometric series or if I expand the the geometric series and the $sin$ at denominator for the first few terms and then perform long division I only seem to get powers of w with positive exponent. Could you please write some more of what you meant to do?
$endgroup$
– EugenioDiPaola
Jan 9 at 8:37
$begingroup$
@EugenioDiPaola Let $$v:=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n$$ and then plug it in equation $(1)$ of my answer.
$endgroup$
– Jevaut
Jan 9 at 16:16
$begingroup$
$$sin{left(frac{kpi}{1-(-kw)}right)}=sin{left[kpi^2sum_{n=0}^{infty}{(-1)^n k^{n+1}w^n}right]}={kpi^2left[k-k^2 w+O(w^2)right]-frac{k^3pi^6}{6^3}left[k-k^2 w+O(w^2)right]^3+kpi^2 O[(k-k^2 w+O(w^2))^5]} =kpi+k^6 frac{pi^6}{6^3}+O(k^5)$$, which doesn't contain any $w$
$endgroup$
– EugenioDiPaola
Jan 15 at 13:37
add a comment |
$begingroup$
Hint:
Let $z=w+left(frac1k-1right)$ then
$$
f(z)=F(w)=frac{w+left(frac1k-1right)}{sinleft(frac{pi}{w+frac1k}right)}=frac{w+left(frac1k-1right)}{sinleft(frac{kpi}{1+kw}right)}
$$
Now recall that the expansion of $kpi(1+kw)^{-1}$ at $0$: for $|w|<frac1k$,
$$
frac{kpi}{1+kw}=kpisum_{n=0}^{infty} (-1)^n k^nw^n=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n
$$
and, for $v in mathbb{C}$,
$$
sin(v)=v-frac{v^3}{3!}+frac{v^5}{5!}-dotstag{1}
$$
Can you take it from here?
$endgroup$
$begingroup$
not really, either if I use $1/sin{x}=1/x+x/6+7/360x^3+O{x^5}$ and then expand the geometric series or if I expand the the geometric series and the $sin$ at denominator for the first few terms and then perform long division I only seem to get powers of w with positive exponent. Could you please write some more of what you meant to do?
$endgroup$
– EugenioDiPaola
Jan 9 at 8:37
$begingroup$
@EugenioDiPaola Let $$v:=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n$$ and then plug it in equation $(1)$ of my answer.
$endgroup$
– Jevaut
Jan 9 at 16:16
$begingroup$
$$sin{left(frac{kpi}{1-(-kw)}right)}=sin{left[kpi^2sum_{n=0}^{infty}{(-1)^n k^{n+1}w^n}right]}={kpi^2left[k-k^2 w+O(w^2)right]-frac{k^3pi^6}{6^3}left[k-k^2 w+O(w^2)right]^3+kpi^2 O[(k-k^2 w+O(w^2))^5]} =kpi+k^6 frac{pi^6}{6^3}+O(k^5)$$, which doesn't contain any $w$
$endgroup$
– EugenioDiPaola
Jan 15 at 13:37
add a comment |
$begingroup$
Hint:
Let $z=w+left(frac1k-1right)$ then
$$
f(z)=F(w)=frac{w+left(frac1k-1right)}{sinleft(frac{pi}{w+frac1k}right)}=frac{w+left(frac1k-1right)}{sinleft(frac{kpi}{1+kw}right)}
$$
Now recall that the expansion of $kpi(1+kw)^{-1}$ at $0$: for $|w|<frac1k$,
$$
frac{kpi}{1+kw}=kpisum_{n=0}^{infty} (-1)^n k^nw^n=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n
$$
and, for $v in mathbb{C}$,
$$
sin(v)=v-frac{v^3}{3!}+frac{v^5}{5!}-dotstag{1}
$$
Can you take it from here?
$endgroup$
Hint:
Let $z=w+left(frac1k-1right)$ then
$$
f(z)=F(w)=frac{w+left(frac1k-1right)}{sinleft(frac{pi}{w+frac1k}right)}=frac{w+left(frac1k-1right)}{sinleft(frac{kpi}{1+kw}right)}
$$
Now recall that the expansion of $kpi(1+kw)^{-1}$ at $0$: for $|w|<frac1k$,
$$
frac{kpi}{1+kw}=kpisum_{n=0}^{infty} (-1)^n k^nw^n=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n
$$
and, for $v in mathbb{C}$,
$$
sin(v)=v-frac{v^3}{3!}+frac{v^5}{5!}-dotstag{1}
$$
Can you take it from here?
edited Jan 9 at 16:14
answered Jan 8 at 14:23
JevautJevaut
1,166212
1,166212
$begingroup$
not really, either if I use $1/sin{x}=1/x+x/6+7/360x^3+O{x^5}$ and then expand the geometric series or if I expand the the geometric series and the $sin$ at denominator for the first few terms and then perform long division I only seem to get powers of w with positive exponent. Could you please write some more of what you meant to do?
$endgroup$
– EugenioDiPaola
Jan 9 at 8:37
$begingroup$
@EugenioDiPaola Let $$v:=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n$$ and then plug it in equation $(1)$ of my answer.
$endgroup$
– Jevaut
Jan 9 at 16:16
$begingroup$
$$sin{left(frac{kpi}{1-(-kw)}right)}=sin{left[kpi^2sum_{n=0}^{infty}{(-1)^n k^{n+1}w^n}right]}={kpi^2left[k-k^2 w+O(w^2)right]-frac{k^3pi^6}{6^3}left[k-k^2 w+O(w^2)right]^3+kpi^2 O[(k-k^2 w+O(w^2))^5]} =kpi+k^6 frac{pi^6}{6^3}+O(k^5)$$, which doesn't contain any $w$
$endgroup$
– EugenioDiPaola
Jan 15 at 13:37
add a comment |
$begingroup$
not really, either if I use $1/sin{x}=1/x+x/6+7/360x^3+O{x^5}$ and then expand the geometric series or if I expand the the geometric series and the $sin$ at denominator for the first few terms and then perform long division I only seem to get powers of w with positive exponent. Could you please write some more of what you meant to do?
$endgroup$
– EugenioDiPaola
Jan 9 at 8:37
$begingroup$
@EugenioDiPaola Let $$v:=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n$$ and then plug it in equation $(1)$ of my answer.
$endgroup$
– Jevaut
Jan 9 at 16:16
$begingroup$
$$sin{left(frac{kpi}{1-(-kw)}right)}=sin{left[kpi^2sum_{n=0}^{infty}{(-1)^n k^{n+1}w^n}right]}={kpi^2left[k-k^2 w+O(w^2)right]-frac{k^3pi^6}{6^3}left[k-k^2 w+O(w^2)right]^3+kpi^2 O[(k-k^2 w+O(w^2))^5]} =kpi+k^6 frac{pi^6}{6^3}+O(k^5)$$, which doesn't contain any $w$
$endgroup$
– EugenioDiPaola
Jan 15 at 13:37
$begingroup$
not really, either if I use $1/sin{x}=1/x+x/6+7/360x^3+O{x^5}$ and then expand the geometric series or if I expand the the geometric series and the $sin$ at denominator for the first few terms and then perform long division I only seem to get powers of w with positive exponent. Could you please write some more of what you meant to do?
$endgroup$
– EugenioDiPaola
Jan 9 at 8:37
$begingroup$
not really, either if I use $1/sin{x}=1/x+x/6+7/360x^3+O{x^5}$ and then expand the geometric series or if I expand the the geometric series and the $sin$ at denominator for the first few terms and then perform long division I only seem to get powers of w with positive exponent. Could you please write some more of what you meant to do?
$endgroup$
– EugenioDiPaola
Jan 9 at 8:37
$begingroup$
@EugenioDiPaola Let $$v:=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n$$ and then plug it in equation $(1)$ of my answer.
$endgroup$
– Jevaut
Jan 9 at 16:16
$begingroup$
@EugenioDiPaola Let $$v:=pisum_{n=0}^{infty} (-1)^n k^{n+1}w^n$$ and then plug it in equation $(1)$ of my answer.
$endgroup$
– Jevaut
Jan 9 at 16:16
$begingroup$
$$sin{left(frac{kpi}{1-(-kw)}right)}=sin{left[kpi^2sum_{n=0}^{infty}{(-1)^n k^{n+1}w^n}right]}={kpi^2left[k-k^2 w+O(w^2)right]-frac{k^3pi^6}{6^3}left[k-k^2 w+O(w^2)right]^3+kpi^2 O[(k-k^2 w+O(w^2))^5]} =kpi+k^6 frac{pi^6}{6^3}+O(k^5)$$, which doesn't contain any $w$
$endgroup$
– EugenioDiPaola
Jan 15 at 13:37
$begingroup$
$$sin{left(frac{kpi}{1-(-kw)}right)}=sin{left[kpi^2sum_{n=0}^{infty}{(-1)^n k^{n+1}w^n}right]}={kpi^2left[k-k^2 w+O(w^2)right]-frac{k^3pi^6}{6^3}left[k-k^2 w+O(w^2)right]^3+kpi^2 O[(k-k^2 w+O(w^2))^5]} =kpi+k^6 frac{pi^6}{6^3}+O(k^5)$$, which doesn't contain any $w$
$endgroup$
– EugenioDiPaola
Jan 15 at 13:37
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066119%2flaurent-series-of-fracz-sin-frac-piz1-in-the-roots-of-the-denomi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown