Estimating the sign of an integral












1












$begingroup$


I would like to show that the expression below
$$c|t|^{alpha} bigg( int limits_{|u| < |t|} frac{e^{iu} -1 -iu}{|u|^{1 + alpha}} mbox{d}u + int limits_{|u| ge |t|} frac{e^{iu} -1}{|u|^{1 + alpha}} mbox{d}u bigg) $$
can be rewritten as
$$-b |t|^{alpha}$$
for some $b > 0$.



It's easy to show that both integrals converge. However there are two issues I don't know how to deal with. The first one is connected to the sign of the integral - how can it be shown that both the sum of integrals is negative? The second issue is linked to $|t|$ in the integration limits. Is that a problem? I suppose that the sum of the integrals in brackets should be a negative constant.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You assume that $a=0$, but I see no further mention of any $a$. Also, I see a lot of irrelevant information; you want to show that there exists some $b>0$ such that $$cint limits_{- infty}^{infty}frac{e^{itx} -1 - itx mathbb{1}_{(-1,1)}(x)}{|x|^{1+alpha}} mbox{d}x=-b|t|^{alpha}+2pi ki,$$ for some $kinBbb{Z}$, right?
    $endgroup$
    – Servaes
    Jan 8 at 14:26












  • $begingroup$
    @Servaes you're right! I've made a typo. Now it's fixed. And yes - basically I would like to show what you wrote in your comment
    $endgroup$
    – Hendrra
    Jan 8 at 14:26










  • $begingroup$
    @Servaes there was no $2 pi ki$ mentioned in the content of the task
    $endgroup$
    – Hendrra
    Jan 8 at 14:28












  • $begingroup$
    Consider what it means for the two powers of $e$ to be equal. Though for such $b$ and $k$ to exist for every $c>0$, you must clearly have $k=0$.
    $endgroup$
    – Servaes
    Jan 8 at 14:28








  • 1




    $begingroup$
    @Servaes I've made some edits. I think now my post is much better and contains less irrelevant information
    $endgroup$
    – Hendrra
    Jan 9 at 14:29
















1












$begingroup$


I would like to show that the expression below
$$c|t|^{alpha} bigg( int limits_{|u| < |t|} frac{e^{iu} -1 -iu}{|u|^{1 + alpha}} mbox{d}u + int limits_{|u| ge |t|} frac{e^{iu} -1}{|u|^{1 + alpha}} mbox{d}u bigg) $$
can be rewritten as
$$-b |t|^{alpha}$$
for some $b > 0$.



It's easy to show that both integrals converge. However there are two issues I don't know how to deal with. The first one is connected to the sign of the integral - how can it be shown that both the sum of integrals is negative? The second issue is linked to $|t|$ in the integration limits. Is that a problem? I suppose that the sum of the integrals in brackets should be a negative constant.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You assume that $a=0$, but I see no further mention of any $a$. Also, I see a lot of irrelevant information; you want to show that there exists some $b>0$ such that $$cint limits_{- infty}^{infty}frac{e^{itx} -1 - itx mathbb{1}_{(-1,1)}(x)}{|x|^{1+alpha}} mbox{d}x=-b|t|^{alpha}+2pi ki,$$ for some $kinBbb{Z}$, right?
    $endgroup$
    – Servaes
    Jan 8 at 14:26












  • $begingroup$
    @Servaes you're right! I've made a typo. Now it's fixed. And yes - basically I would like to show what you wrote in your comment
    $endgroup$
    – Hendrra
    Jan 8 at 14:26










  • $begingroup$
    @Servaes there was no $2 pi ki$ mentioned in the content of the task
    $endgroup$
    – Hendrra
    Jan 8 at 14:28












  • $begingroup$
    Consider what it means for the two powers of $e$ to be equal. Though for such $b$ and $k$ to exist for every $c>0$, you must clearly have $k=0$.
    $endgroup$
    – Servaes
    Jan 8 at 14:28








  • 1




    $begingroup$
    @Servaes I've made some edits. I think now my post is much better and contains less irrelevant information
    $endgroup$
    – Hendrra
    Jan 9 at 14:29














1












1








1





$begingroup$


I would like to show that the expression below
$$c|t|^{alpha} bigg( int limits_{|u| < |t|} frac{e^{iu} -1 -iu}{|u|^{1 + alpha}} mbox{d}u + int limits_{|u| ge |t|} frac{e^{iu} -1}{|u|^{1 + alpha}} mbox{d}u bigg) $$
can be rewritten as
$$-b |t|^{alpha}$$
for some $b > 0$.



It's easy to show that both integrals converge. However there are two issues I don't know how to deal with. The first one is connected to the sign of the integral - how can it be shown that both the sum of integrals is negative? The second issue is linked to $|t|$ in the integration limits. Is that a problem? I suppose that the sum of the integrals in brackets should be a negative constant.










share|cite|improve this question











$endgroup$




I would like to show that the expression below
$$c|t|^{alpha} bigg( int limits_{|u| < |t|} frac{e^{iu} -1 -iu}{|u|^{1 + alpha}} mbox{d}u + int limits_{|u| ge |t|} frac{e^{iu} -1}{|u|^{1 + alpha}} mbox{d}u bigg) $$
can be rewritten as
$$-b |t|^{alpha}$$
for some $b > 0$.



It's easy to show that both integrals converge. However there are two issues I don't know how to deal with. The first one is connected to the sign of the integral - how can it be shown that both the sum of integrals is negative? The second issue is linked to $|t|$ in the integration limits. Is that a problem? I suppose that the sum of the integrals in brackets should be a negative constant.







real-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 9 at 14:25







Hendrra

















asked Jan 8 at 13:13









HendrraHendrra

1,200516




1,200516












  • $begingroup$
    You assume that $a=0$, but I see no further mention of any $a$. Also, I see a lot of irrelevant information; you want to show that there exists some $b>0$ such that $$cint limits_{- infty}^{infty}frac{e^{itx} -1 - itx mathbb{1}_{(-1,1)}(x)}{|x|^{1+alpha}} mbox{d}x=-b|t|^{alpha}+2pi ki,$$ for some $kinBbb{Z}$, right?
    $endgroup$
    – Servaes
    Jan 8 at 14:26












  • $begingroup$
    @Servaes you're right! I've made a typo. Now it's fixed. And yes - basically I would like to show what you wrote in your comment
    $endgroup$
    – Hendrra
    Jan 8 at 14:26










  • $begingroup$
    @Servaes there was no $2 pi ki$ mentioned in the content of the task
    $endgroup$
    – Hendrra
    Jan 8 at 14:28












  • $begingroup$
    Consider what it means for the two powers of $e$ to be equal. Though for such $b$ and $k$ to exist for every $c>0$, you must clearly have $k=0$.
    $endgroup$
    – Servaes
    Jan 8 at 14:28








  • 1




    $begingroup$
    @Servaes I've made some edits. I think now my post is much better and contains less irrelevant information
    $endgroup$
    – Hendrra
    Jan 9 at 14:29


















  • $begingroup$
    You assume that $a=0$, but I see no further mention of any $a$. Also, I see a lot of irrelevant information; you want to show that there exists some $b>0$ such that $$cint limits_{- infty}^{infty}frac{e^{itx} -1 - itx mathbb{1}_{(-1,1)}(x)}{|x|^{1+alpha}} mbox{d}x=-b|t|^{alpha}+2pi ki,$$ for some $kinBbb{Z}$, right?
    $endgroup$
    – Servaes
    Jan 8 at 14:26












  • $begingroup$
    @Servaes you're right! I've made a typo. Now it's fixed. And yes - basically I would like to show what you wrote in your comment
    $endgroup$
    – Hendrra
    Jan 8 at 14:26










  • $begingroup$
    @Servaes there was no $2 pi ki$ mentioned in the content of the task
    $endgroup$
    – Hendrra
    Jan 8 at 14:28












  • $begingroup$
    Consider what it means for the two powers of $e$ to be equal. Though for such $b$ and $k$ to exist for every $c>0$, you must clearly have $k=0$.
    $endgroup$
    – Servaes
    Jan 8 at 14:28








  • 1




    $begingroup$
    @Servaes I've made some edits. I think now my post is much better and contains less irrelevant information
    $endgroup$
    – Hendrra
    Jan 9 at 14:29
















$begingroup$
You assume that $a=0$, but I see no further mention of any $a$. Also, I see a lot of irrelevant information; you want to show that there exists some $b>0$ such that $$cint limits_{- infty}^{infty}frac{e^{itx} -1 - itx mathbb{1}_{(-1,1)}(x)}{|x|^{1+alpha}} mbox{d}x=-b|t|^{alpha}+2pi ki,$$ for some $kinBbb{Z}$, right?
$endgroup$
– Servaes
Jan 8 at 14:26






$begingroup$
You assume that $a=0$, but I see no further mention of any $a$. Also, I see a lot of irrelevant information; you want to show that there exists some $b>0$ such that $$cint limits_{- infty}^{infty}frac{e^{itx} -1 - itx mathbb{1}_{(-1,1)}(x)}{|x|^{1+alpha}} mbox{d}x=-b|t|^{alpha}+2pi ki,$$ for some $kinBbb{Z}$, right?
$endgroup$
– Servaes
Jan 8 at 14:26














$begingroup$
@Servaes you're right! I've made a typo. Now it's fixed. And yes - basically I would like to show what you wrote in your comment
$endgroup$
– Hendrra
Jan 8 at 14:26




$begingroup$
@Servaes you're right! I've made a typo. Now it's fixed. And yes - basically I would like to show what you wrote in your comment
$endgroup$
– Hendrra
Jan 8 at 14:26












$begingroup$
@Servaes there was no $2 pi ki$ mentioned in the content of the task
$endgroup$
– Hendrra
Jan 8 at 14:28






$begingroup$
@Servaes there was no $2 pi ki$ mentioned in the content of the task
$endgroup$
– Hendrra
Jan 8 at 14:28














$begingroup$
Consider what it means for the two powers of $e$ to be equal. Though for such $b$ and $k$ to exist for every $c>0$, you must clearly have $k=0$.
$endgroup$
– Servaes
Jan 8 at 14:28






$begingroup$
Consider what it means for the two powers of $e$ to be equal. Though for such $b$ and $k$ to exist for every $c>0$, you must clearly have $k=0$.
$endgroup$
– Servaes
Jan 8 at 14:28






1




1




$begingroup$
@Servaes I've made some edits. I think now my post is much better and contains less irrelevant information
$endgroup$
– Hendrra
Jan 9 at 14:29




$begingroup$
@Servaes I've made some edits. I think now my post is much better and contains less irrelevant information
$endgroup$
– Hendrra
Jan 9 at 14:29










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066148%2festimating-the-sign-of-an-integral%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066148%2festimating-the-sign-of-an-integral%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅