Let $x>0$ , $lfloor xrfloor$ denotes the greatest integer less than or equal to $x$. Then find limit












1












$begingroup$



For $x>0$, let $lfloor xrfloor$ denote the greatest integer less than or equal to $x$. Then
$$
lim_{xto0^+}xleft(leftlfloorfrac{1}{x}rightrfloor
+leftlfloorfrac{2}{x}rightrfloor+dots
+leftlfloorfrac{10}{x}rightrfloorright)=___
$$




I know , $lfloor xrfloor= x $ if $xin Z$ &
$n$ if $xnotin Z$ and $n in Z$ and $ n<x<n+1$.



I don't know how to proceed further !!










share|cite|improve this question











$endgroup$












  • $begingroup$
    The way you defined $lfloor x rfloor$ in the title does not agree with your interpretation in the third line.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 9:17










  • $begingroup$
    note: if $x$ is not an integer $lfloor xrfloor ne x-1$ . However, $lfloor xrfloor = x$ "wihout the decimal part after the comma". Eg. $lfloor 2.568rfloor = 2$
    $endgroup$
    – TheD0ubleT
    Jan 10 at 9:17






  • 3




    $begingroup$
    Hint : Use $x-1le lfloor x rfloorle x$
    $endgroup$
    – Peter
    Jan 10 at 9:22






  • 2




    $begingroup$
    Hint: change the limit to $lim_{ytoinfty}frac{1}{y}(lfloor yrfloor+lfloor 2yrfloor+dots+lfloor 10yrfloor)$.
    $endgroup$
    – egreg
    Jan 10 at 9:32
















1












$begingroup$



For $x>0$, let $lfloor xrfloor$ denote the greatest integer less than or equal to $x$. Then
$$
lim_{xto0^+}xleft(leftlfloorfrac{1}{x}rightrfloor
+leftlfloorfrac{2}{x}rightrfloor+dots
+leftlfloorfrac{10}{x}rightrfloorright)=___
$$




I know , $lfloor xrfloor= x $ if $xin Z$ &
$n$ if $xnotin Z$ and $n in Z$ and $ n<x<n+1$.



I don't know how to proceed further !!










share|cite|improve this question











$endgroup$












  • $begingroup$
    The way you defined $lfloor x rfloor$ in the title does not agree with your interpretation in the third line.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 9:17










  • $begingroup$
    note: if $x$ is not an integer $lfloor xrfloor ne x-1$ . However, $lfloor xrfloor = x$ "wihout the decimal part after the comma". Eg. $lfloor 2.568rfloor = 2$
    $endgroup$
    – TheD0ubleT
    Jan 10 at 9:17






  • 3




    $begingroup$
    Hint : Use $x-1le lfloor x rfloorle x$
    $endgroup$
    – Peter
    Jan 10 at 9:22






  • 2




    $begingroup$
    Hint: change the limit to $lim_{ytoinfty}frac{1}{y}(lfloor yrfloor+lfloor 2yrfloor+dots+lfloor 10yrfloor)$.
    $endgroup$
    – egreg
    Jan 10 at 9:32














1












1








1





$begingroup$



For $x>0$, let $lfloor xrfloor$ denote the greatest integer less than or equal to $x$. Then
$$
lim_{xto0^+}xleft(leftlfloorfrac{1}{x}rightrfloor
+leftlfloorfrac{2}{x}rightrfloor+dots
+leftlfloorfrac{10}{x}rightrfloorright)=___
$$




I know , $lfloor xrfloor= x $ if $xin Z$ &
$n$ if $xnotin Z$ and $n in Z$ and $ n<x<n+1$.



I don't know how to proceed further !!










share|cite|improve this question











$endgroup$





For $x>0$, let $lfloor xrfloor$ denote the greatest integer less than or equal to $x$. Then
$$
lim_{xto0^+}xleft(leftlfloorfrac{1}{x}rightrfloor
+leftlfloorfrac{2}{x}rightrfloor+dots
+leftlfloorfrac{10}{x}rightrfloorright)=___
$$




I know , $lfloor xrfloor= x $ if $xin Z$ &
$n$ if $xnotin Z$ and $n in Z$ and $ n<x<n+1$.



I don't know how to proceed further !!







real-analysis calculus algebra-precalculus limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 10 at 9:29









egreg

183k1486205




183k1486205










asked Jan 10 at 9:14









sejysejy

1579




1579












  • $begingroup$
    The way you defined $lfloor x rfloor$ in the title does not agree with your interpretation in the third line.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 9:17










  • $begingroup$
    note: if $x$ is not an integer $lfloor xrfloor ne x-1$ . However, $lfloor xrfloor = x$ "wihout the decimal part after the comma". Eg. $lfloor 2.568rfloor = 2$
    $endgroup$
    – TheD0ubleT
    Jan 10 at 9:17






  • 3




    $begingroup$
    Hint : Use $x-1le lfloor x rfloorle x$
    $endgroup$
    – Peter
    Jan 10 at 9:22






  • 2




    $begingroup$
    Hint: change the limit to $lim_{ytoinfty}frac{1}{y}(lfloor yrfloor+lfloor 2yrfloor+dots+lfloor 10yrfloor)$.
    $endgroup$
    – egreg
    Jan 10 at 9:32


















  • $begingroup$
    The way you defined $lfloor x rfloor$ in the title does not agree with your interpretation in the third line.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 9:17










  • $begingroup$
    note: if $x$ is not an integer $lfloor xrfloor ne x-1$ . However, $lfloor xrfloor = x$ "wihout the decimal part after the comma". Eg. $lfloor 2.568rfloor = 2$
    $endgroup$
    – TheD0ubleT
    Jan 10 at 9:17






  • 3




    $begingroup$
    Hint : Use $x-1le lfloor x rfloorle x$
    $endgroup$
    – Peter
    Jan 10 at 9:22






  • 2




    $begingroup$
    Hint: change the limit to $lim_{ytoinfty}frac{1}{y}(lfloor yrfloor+lfloor 2yrfloor+dots+lfloor 10yrfloor)$.
    $endgroup$
    – egreg
    Jan 10 at 9:32
















$begingroup$
The way you defined $lfloor x rfloor$ in the title does not agree with your interpretation in the third line.
$endgroup$
– Kavi Rama Murthy
Jan 10 at 9:17




$begingroup$
The way you defined $lfloor x rfloor$ in the title does not agree with your interpretation in the third line.
$endgroup$
– Kavi Rama Murthy
Jan 10 at 9:17












$begingroup$
note: if $x$ is not an integer $lfloor xrfloor ne x-1$ . However, $lfloor xrfloor = x$ "wihout the decimal part after the comma". Eg. $lfloor 2.568rfloor = 2$
$endgroup$
– TheD0ubleT
Jan 10 at 9:17




$begingroup$
note: if $x$ is not an integer $lfloor xrfloor ne x-1$ . However, $lfloor xrfloor = x$ "wihout the decimal part after the comma". Eg. $lfloor 2.568rfloor = 2$
$endgroup$
– TheD0ubleT
Jan 10 at 9:17




3




3




$begingroup$
Hint : Use $x-1le lfloor x rfloorle x$
$endgroup$
– Peter
Jan 10 at 9:22




$begingroup$
Hint : Use $x-1le lfloor x rfloorle x$
$endgroup$
– Peter
Jan 10 at 9:22




2




2




$begingroup$
Hint: change the limit to $lim_{ytoinfty}frac{1}{y}(lfloor yrfloor+lfloor 2yrfloor+dots+lfloor 10yrfloor)$.
$endgroup$
– egreg
Jan 10 at 9:32




$begingroup$
Hint: change the limit to $lim_{ytoinfty}frac{1}{y}(lfloor yrfloor+lfloor 2yrfloor+dots+lfloor 10yrfloor)$.
$endgroup$
– egreg
Jan 10 at 9:32










1 Answer
1






active

oldest

votes


















0












$begingroup$

$frac{1}{x} -1< lfloor frac{1}{x}rfloor<frac{1}{x}$



multiplying by x we get
$implies$x[$frac{1}{x} -1]< xlfloor frac{1}{x}rfloor<x[frac{1}{x}]$



this gives $1-x< lfloor frac{1}{x}rfloor<1$
taking limit x $to 0^{+}$ by squeez theorem ,we get
$ lim_{xto 0^{+}} xlfloor frac{1}{x}rfloor=1$



similarly,



$frac{2}{x} -1< lfloor frac{2}{x}rfloor<frac{2}{x}$



multiplying by x we get
$implies$x[$frac{2}{x} -1]< xlfloor frac{2}{x}rfloor<x[frac{2}{x}]$



this gives $2-x< lfloor frac{2}{x}rfloor<2$



taking limit x $to 0^{+}$ by squeez theorem ,we get
$ lim_{xto 0^{+}} xlfloor frac{2}{x}rfloor=2$



so this give value of complete expression =55.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068418%2flet-x0-lfloor-x-rfloor-denotes-the-greatest-integer-less-than-or-equal-t%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    $frac{1}{x} -1< lfloor frac{1}{x}rfloor<frac{1}{x}$



    multiplying by x we get
    $implies$x[$frac{1}{x} -1]< xlfloor frac{1}{x}rfloor<x[frac{1}{x}]$



    this gives $1-x< lfloor frac{1}{x}rfloor<1$
    taking limit x $to 0^{+}$ by squeez theorem ,we get
    $ lim_{xto 0^{+}} xlfloor frac{1}{x}rfloor=1$



    similarly,



    $frac{2}{x} -1< lfloor frac{2}{x}rfloor<frac{2}{x}$



    multiplying by x we get
    $implies$x[$frac{2}{x} -1]< xlfloor frac{2}{x}rfloor<x[frac{2}{x}]$



    this gives $2-x< lfloor frac{2}{x}rfloor<2$



    taking limit x $to 0^{+}$ by squeez theorem ,we get
    $ lim_{xto 0^{+}} xlfloor frac{2}{x}rfloor=2$



    so this give value of complete expression =55.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      $frac{1}{x} -1< lfloor frac{1}{x}rfloor<frac{1}{x}$



      multiplying by x we get
      $implies$x[$frac{1}{x} -1]< xlfloor frac{1}{x}rfloor<x[frac{1}{x}]$



      this gives $1-x< lfloor frac{1}{x}rfloor<1$
      taking limit x $to 0^{+}$ by squeez theorem ,we get
      $ lim_{xto 0^{+}} xlfloor frac{1}{x}rfloor=1$



      similarly,



      $frac{2}{x} -1< lfloor frac{2}{x}rfloor<frac{2}{x}$



      multiplying by x we get
      $implies$x[$frac{2}{x} -1]< xlfloor frac{2}{x}rfloor<x[frac{2}{x}]$



      this gives $2-x< lfloor frac{2}{x}rfloor<2$



      taking limit x $to 0^{+}$ by squeez theorem ,we get
      $ lim_{xto 0^{+}} xlfloor frac{2}{x}rfloor=2$



      so this give value of complete expression =55.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        $frac{1}{x} -1< lfloor frac{1}{x}rfloor<frac{1}{x}$



        multiplying by x we get
        $implies$x[$frac{1}{x} -1]< xlfloor frac{1}{x}rfloor<x[frac{1}{x}]$



        this gives $1-x< lfloor frac{1}{x}rfloor<1$
        taking limit x $to 0^{+}$ by squeez theorem ,we get
        $ lim_{xto 0^{+}} xlfloor frac{1}{x}rfloor=1$



        similarly,



        $frac{2}{x} -1< lfloor frac{2}{x}rfloor<frac{2}{x}$



        multiplying by x we get
        $implies$x[$frac{2}{x} -1]< xlfloor frac{2}{x}rfloor<x[frac{2}{x}]$



        this gives $2-x< lfloor frac{2}{x}rfloor<2$



        taking limit x $to 0^{+}$ by squeez theorem ,we get
        $ lim_{xto 0^{+}} xlfloor frac{2}{x}rfloor=2$



        so this give value of complete expression =55.






        share|cite|improve this answer









        $endgroup$



        $frac{1}{x} -1< lfloor frac{1}{x}rfloor<frac{1}{x}$



        multiplying by x we get
        $implies$x[$frac{1}{x} -1]< xlfloor frac{1}{x}rfloor<x[frac{1}{x}]$



        this gives $1-x< lfloor frac{1}{x}rfloor<1$
        taking limit x $to 0^{+}$ by squeez theorem ,we get
        $ lim_{xto 0^{+}} xlfloor frac{1}{x}rfloor=1$



        similarly,



        $frac{2}{x} -1< lfloor frac{2}{x}rfloor<frac{2}{x}$



        multiplying by x we get
        $implies$x[$frac{2}{x} -1]< xlfloor frac{2}{x}rfloor<x[frac{2}{x}]$



        this gives $2-x< lfloor frac{2}{x}rfloor<2$



        taking limit x $to 0^{+}$ by squeez theorem ,we get
        $ lim_{xto 0^{+}} xlfloor frac{2}{x}rfloor=2$



        so this give value of complete expression =55.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 10 at 9:48









        sejysejy

        1579




        1579






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068418%2flet-x0-lfloor-x-rfloor-denotes-the-greatest-integer-less-than-or-equal-t%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            張江高科駅