Let $x>0$ , $lfloor xrfloor$ denotes the greatest integer less than or equal to $x$. Then find limit
$begingroup$
For $x>0$, let $lfloor xrfloor$ denote the greatest integer less than or equal to $x$. Then
$$
lim_{xto0^+}xleft(leftlfloorfrac{1}{x}rightrfloor
+leftlfloorfrac{2}{x}rightrfloor+dots
+leftlfloorfrac{10}{x}rightrfloorright)=___
$$
I know , $lfloor xrfloor= x $ if $xin Z$ &
$n$ if $xnotin Z$ and $n in Z$ and $ n<x<n+1$.
I don't know how to proceed further !!
real-analysis calculus algebra-precalculus limits
$endgroup$
add a comment |
$begingroup$
For $x>0$, let $lfloor xrfloor$ denote the greatest integer less than or equal to $x$. Then
$$
lim_{xto0^+}xleft(leftlfloorfrac{1}{x}rightrfloor
+leftlfloorfrac{2}{x}rightrfloor+dots
+leftlfloorfrac{10}{x}rightrfloorright)=___
$$
I know , $lfloor xrfloor= x $ if $xin Z$ &
$n$ if $xnotin Z$ and $n in Z$ and $ n<x<n+1$.
I don't know how to proceed further !!
real-analysis calculus algebra-precalculus limits
$endgroup$
$begingroup$
The way you defined $lfloor x rfloor$ in the title does not agree with your interpretation in the third line.
$endgroup$
– Kavi Rama Murthy
Jan 10 at 9:17
$begingroup$
note: if $x$ is not an integer $lfloor xrfloor ne x-1$ . However, $lfloor xrfloor = x$ "wihout the decimal part after the comma". Eg. $lfloor 2.568rfloor = 2$
$endgroup$
– TheD0ubleT
Jan 10 at 9:17
3
$begingroup$
Hint : Use $x-1le lfloor x rfloorle x$
$endgroup$
– Peter
Jan 10 at 9:22
2
$begingroup$
Hint: change the limit to $lim_{ytoinfty}frac{1}{y}(lfloor yrfloor+lfloor 2yrfloor+dots+lfloor 10yrfloor)$.
$endgroup$
– egreg
Jan 10 at 9:32
add a comment |
$begingroup$
For $x>0$, let $lfloor xrfloor$ denote the greatest integer less than or equal to $x$. Then
$$
lim_{xto0^+}xleft(leftlfloorfrac{1}{x}rightrfloor
+leftlfloorfrac{2}{x}rightrfloor+dots
+leftlfloorfrac{10}{x}rightrfloorright)=___
$$
I know , $lfloor xrfloor= x $ if $xin Z$ &
$n$ if $xnotin Z$ and $n in Z$ and $ n<x<n+1$.
I don't know how to proceed further !!
real-analysis calculus algebra-precalculus limits
$endgroup$
For $x>0$, let $lfloor xrfloor$ denote the greatest integer less than or equal to $x$. Then
$$
lim_{xto0^+}xleft(leftlfloorfrac{1}{x}rightrfloor
+leftlfloorfrac{2}{x}rightrfloor+dots
+leftlfloorfrac{10}{x}rightrfloorright)=___
$$
I know , $lfloor xrfloor= x $ if $xin Z$ &
$n$ if $xnotin Z$ and $n in Z$ and $ n<x<n+1$.
I don't know how to proceed further !!
real-analysis calculus algebra-precalculus limits
real-analysis calculus algebra-precalculus limits
edited Jan 10 at 9:29
egreg
183k1486205
183k1486205
asked Jan 10 at 9:14
sejysejy
1579
1579
$begingroup$
The way you defined $lfloor x rfloor$ in the title does not agree with your interpretation in the third line.
$endgroup$
– Kavi Rama Murthy
Jan 10 at 9:17
$begingroup$
note: if $x$ is not an integer $lfloor xrfloor ne x-1$ . However, $lfloor xrfloor = x$ "wihout the decimal part after the comma". Eg. $lfloor 2.568rfloor = 2$
$endgroup$
– TheD0ubleT
Jan 10 at 9:17
3
$begingroup$
Hint : Use $x-1le lfloor x rfloorle x$
$endgroup$
– Peter
Jan 10 at 9:22
2
$begingroup$
Hint: change the limit to $lim_{ytoinfty}frac{1}{y}(lfloor yrfloor+lfloor 2yrfloor+dots+lfloor 10yrfloor)$.
$endgroup$
– egreg
Jan 10 at 9:32
add a comment |
$begingroup$
The way you defined $lfloor x rfloor$ in the title does not agree with your interpretation in the third line.
$endgroup$
– Kavi Rama Murthy
Jan 10 at 9:17
$begingroup$
note: if $x$ is not an integer $lfloor xrfloor ne x-1$ . However, $lfloor xrfloor = x$ "wihout the decimal part after the comma". Eg. $lfloor 2.568rfloor = 2$
$endgroup$
– TheD0ubleT
Jan 10 at 9:17
3
$begingroup$
Hint : Use $x-1le lfloor x rfloorle x$
$endgroup$
– Peter
Jan 10 at 9:22
2
$begingroup$
Hint: change the limit to $lim_{ytoinfty}frac{1}{y}(lfloor yrfloor+lfloor 2yrfloor+dots+lfloor 10yrfloor)$.
$endgroup$
– egreg
Jan 10 at 9:32
$begingroup$
The way you defined $lfloor x rfloor$ in the title does not agree with your interpretation in the third line.
$endgroup$
– Kavi Rama Murthy
Jan 10 at 9:17
$begingroup$
The way you defined $lfloor x rfloor$ in the title does not agree with your interpretation in the third line.
$endgroup$
– Kavi Rama Murthy
Jan 10 at 9:17
$begingroup$
note: if $x$ is not an integer $lfloor xrfloor ne x-1$ . However, $lfloor xrfloor = x$ "wihout the decimal part after the comma". Eg. $lfloor 2.568rfloor = 2$
$endgroup$
– TheD0ubleT
Jan 10 at 9:17
$begingroup$
note: if $x$ is not an integer $lfloor xrfloor ne x-1$ . However, $lfloor xrfloor = x$ "wihout the decimal part after the comma". Eg. $lfloor 2.568rfloor = 2$
$endgroup$
– TheD0ubleT
Jan 10 at 9:17
3
3
$begingroup$
Hint : Use $x-1le lfloor x rfloorle x$
$endgroup$
– Peter
Jan 10 at 9:22
$begingroup$
Hint : Use $x-1le lfloor x rfloorle x$
$endgroup$
– Peter
Jan 10 at 9:22
2
2
$begingroup$
Hint: change the limit to $lim_{ytoinfty}frac{1}{y}(lfloor yrfloor+lfloor 2yrfloor+dots+lfloor 10yrfloor)$.
$endgroup$
– egreg
Jan 10 at 9:32
$begingroup$
Hint: change the limit to $lim_{ytoinfty}frac{1}{y}(lfloor yrfloor+lfloor 2yrfloor+dots+lfloor 10yrfloor)$.
$endgroup$
– egreg
Jan 10 at 9:32
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$frac{1}{x} -1< lfloor frac{1}{x}rfloor<frac{1}{x}$
multiplying by x we get
$implies$x[$frac{1}{x} -1]< xlfloor frac{1}{x}rfloor<x[frac{1}{x}]$
this gives $1-x< lfloor frac{1}{x}rfloor<1$
taking limit x $to 0^{+}$ by squeez theorem ,we get
$ lim_{xto 0^{+}} xlfloor frac{1}{x}rfloor=1$
similarly,
$frac{2}{x} -1< lfloor frac{2}{x}rfloor<frac{2}{x}$
multiplying by x we get
$implies$x[$frac{2}{x} -1]< xlfloor frac{2}{x}rfloor<x[frac{2}{x}]$
this gives $2-x< lfloor frac{2}{x}rfloor<2$
taking limit x $to 0^{+}$ by squeez theorem ,we get
$ lim_{xto 0^{+}} xlfloor frac{2}{x}rfloor=2$
so this give value of complete expression =55.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068418%2flet-x0-lfloor-x-rfloor-denotes-the-greatest-integer-less-than-or-equal-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$frac{1}{x} -1< lfloor frac{1}{x}rfloor<frac{1}{x}$
multiplying by x we get
$implies$x[$frac{1}{x} -1]< xlfloor frac{1}{x}rfloor<x[frac{1}{x}]$
this gives $1-x< lfloor frac{1}{x}rfloor<1$
taking limit x $to 0^{+}$ by squeez theorem ,we get
$ lim_{xto 0^{+}} xlfloor frac{1}{x}rfloor=1$
similarly,
$frac{2}{x} -1< lfloor frac{2}{x}rfloor<frac{2}{x}$
multiplying by x we get
$implies$x[$frac{2}{x} -1]< xlfloor frac{2}{x}rfloor<x[frac{2}{x}]$
this gives $2-x< lfloor frac{2}{x}rfloor<2$
taking limit x $to 0^{+}$ by squeez theorem ,we get
$ lim_{xto 0^{+}} xlfloor frac{2}{x}rfloor=2$
so this give value of complete expression =55.
$endgroup$
add a comment |
$begingroup$
$frac{1}{x} -1< lfloor frac{1}{x}rfloor<frac{1}{x}$
multiplying by x we get
$implies$x[$frac{1}{x} -1]< xlfloor frac{1}{x}rfloor<x[frac{1}{x}]$
this gives $1-x< lfloor frac{1}{x}rfloor<1$
taking limit x $to 0^{+}$ by squeez theorem ,we get
$ lim_{xto 0^{+}} xlfloor frac{1}{x}rfloor=1$
similarly,
$frac{2}{x} -1< lfloor frac{2}{x}rfloor<frac{2}{x}$
multiplying by x we get
$implies$x[$frac{2}{x} -1]< xlfloor frac{2}{x}rfloor<x[frac{2}{x}]$
this gives $2-x< lfloor frac{2}{x}rfloor<2$
taking limit x $to 0^{+}$ by squeez theorem ,we get
$ lim_{xto 0^{+}} xlfloor frac{2}{x}rfloor=2$
so this give value of complete expression =55.
$endgroup$
add a comment |
$begingroup$
$frac{1}{x} -1< lfloor frac{1}{x}rfloor<frac{1}{x}$
multiplying by x we get
$implies$x[$frac{1}{x} -1]< xlfloor frac{1}{x}rfloor<x[frac{1}{x}]$
this gives $1-x< lfloor frac{1}{x}rfloor<1$
taking limit x $to 0^{+}$ by squeez theorem ,we get
$ lim_{xto 0^{+}} xlfloor frac{1}{x}rfloor=1$
similarly,
$frac{2}{x} -1< lfloor frac{2}{x}rfloor<frac{2}{x}$
multiplying by x we get
$implies$x[$frac{2}{x} -1]< xlfloor frac{2}{x}rfloor<x[frac{2}{x}]$
this gives $2-x< lfloor frac{2}{x}rfloor<2$
taking limit x $to 0^{+}$ by squeez theorem ,we get
$ lim_{xto 0^{+}} xlfloor frac{2}{x}rfloor=2$
so this give value of complete expression =55.
$endgroup$
$frac{1}{x} -1< lfloor frac{1}{x}rfloor<frac{1}{x}$
multiplying by x we get
$implies$x[$frac{1}{x} -1]< xlfloor frac{1}{x}rfloor<x[frac{1}{x}]$
this gives $1-x< lfloor frac{1}{x}rfloor<1$
taking limit x $to 0^{+}$ by squeez theorem ,we get
$ lim_{xto 0^{+}} xlfloor frac{1}{x}rfloor=1$
similarly,
$frac{2}{x} -1< lfloor frac{2}{x}rfloor<frac{2}{x}$
multiplying by x we get
$implies$x[$frac{2}{x} -1]< xlfloor frac{2}{x}rfloor<x[frac{2}{x}]$
this gives $2-x< lfloor frac{2}{x}rfloor<2$
taking limit x $to 0^{+}$ by squeez theorem ,we get
$ lim_{xto 0^{+}} xlfloor frac{2}{x}rfloor=2$
so this give value of complete expression =55.
answered Jan 10 at 9:48
sejysejy
1579
1579
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068418%2flet-x0-lfloor-x-rfloor-denotes-the-greatest-integer-less-than-or-equal-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The way you defined $lfloor x rfloor$ in the title does not agree with your interpretation in the third line.
$endgroup$
– Kavi Rama Murthy
Jan 10 at 9:17
$begingroup$
note: if $x$ is not an integer $lfloor xrfloor ne x-1$ . However, $lfloor xrfloor = x$ "wihout the decimal part after the comma". Eg. $lfloor 2.568rfloor = 2$
$endgroup$
– TheD0ubleT
Jan 10 at 9:17
3
$begingroup$
Hint : Use $x-1le lfloor x rfloorle x$
$endgroup$
– Peter
Jan 10 at 9:22
2
$begingroup$
Hint: change the limit to $lim_{ytoinfty}frac{1}{y}(lfloor yrfloor+lfloor 2yrfloor+dots+lfloor 10yrfloor)$.
$endgroup$
– egreg
Jan 10 at 9:32