Find a modified coupling $((X_n,tilde Y_n))_{n∈ℕ_0}$ with the same coupling time $τ$ and $tilde Y_n=X_n$...
$begingroup$
Let
$(Omega,mathcal A,operatorname P)$ be a probability space
$(E,mathcal E)$ be a measurable space
$(X_n)_{ninmathbb N_0}$ and $(Y_n)_{ninmathbb N_0}$ be independent $(E,mathcal E)$-valued time-homogeneous Markov chains on $(Omega,mathcal A,operatorname P)$ with common transition kernel $kappa$ and $$Z_n:=(X_n,Y_n);;;text{for }ninmathbb N_0$$
$mathcal F^X$, $mathcal F^Y$ and $mathcal F^Z$ denote the filtraiton generated by $X$, $Y$ and $Z$, respectively
It's easy to see that $$tau:=infleft{ninmathbb N_0:X_n=Y_nright}$$ is an $mathcal F^Z$-stopping time and hence $$tilde Y_n:=1_{left{:n:<:tau:right}}Y_n+1_{left{:n:ge:tau:right}}X_n;;;text{for }ninmathbb N_0$$ is $mathcal F^Z$-adapted. Moreover, $mathcal F^Z=mathcal F^Xveemathcal F^Y$.
How can we show that $tilde Y$ is a time-homogeneous Markov chain with the same distribution as $Y$?
I guess the basic idea is that $Z$ is clearly a time-homogeneous Markov chain with transition kernel $pi$ satisfying $$pi((x,y),B_1times B_2)=kappa(x,B_1)kappa(y,B_2);;;text{for all }x,yin Etext{ and }B_iinmathcal Etag1.$$ Since $mathbb N_0$ is countable, $Z$ is strongly Markovian at $tau$ and hence $$1_{left{:tau:<:infty:right}}operatorname Eleft[fleft(left(Z_{tau+n}right)_{ninmathbb N_0}right)midmathcal F_tauright]=1_{left{:tau:<:infty:right}}(pi f)(Z_tau);;;text{almost surely}tag2,$$ where $pi f:=intpi(;cdot;,{rm d}z)f(z)$, for all bounded and $(mathcal Eotimesmathcal E)^{otimesmathbb N_0}$-measurable $f:(Etimes E)^{mathbb N_0}tomathbb R$. So, if $kinmathbb N_0$, $n_0,ldots,n_kinmathbb N_0$ with $0=n_0<cdots<n_k$ and $Binmathcal E^{otimes k}$, we obtain begin{equation}begin{split}1_{left{:tau:<:infty:right}}operatorname Pleft[left(tilde Y_{tau+n_1},ldots,tilde Y_{tau+n_k}right)in Bmidmathcal F_tauright]&=1_{left{:tau:<:infty:right}}bigotimes_{i=1}^kkappa^{n_i-n_{i-1}}(X_tau,B)\&=1_{left{:tau:<:infty:right}}operatorname Pleft[left(Y_{tau+n_1},ldots,Y_{tau+n_k}right)in Bmidmathcal F_tauright]end{split}tag3end{equation} almost surely.
However, it's neither clear to me how we can conclude that $tilde Y$ is Markovian (with respect to its generated filtration) nor why it has the same distribution as $Y$.
Clearly, the distribution of $Y$ is uniquely determined by the finite-dimensional distributions $operatorname Pleft[left(Y_{n_1},ldots,Y_{n_k}right);cdot;right]$ (and the same applies to $tilde Y$). Moreover, we may write $$operatorname Pleft[left(tilde Y_{n_1},ldots,tilde Y_{n_k}right);cdot;right]=operatorname Pleft[n<tau,left(Y_{n_1},ldots,Y_{n_k}right);cdot;right]+operatorname Pleft[ngetau,left(X_{n_1},ldots,X_{n_k}right);cdot;right]tag4.$$ Many pieces, I'm not able to combine.
probability-theory stochastic-processes markov-chains markov-process coupling
$endgroup$
add a comment |
$begingroup$
Let
$(Omega,mathcal A,operatorname P)$ be a probability space
$(E,mathcal E)$ be a measurable space
$(X_n)_{ninmathbb N_0}$ and $(Y_n)_{ninmathbb N_0}$ be independent $(E,mathcal E)$-valued time-homogeneous Markov chains on $(Omega,mathcal A,operatorname P)$ with common transition kernel $kappa$ and $$Z_n:=(X_n,Y_n);;;text{for }ninmathbb N_0$$
$mathcal F^X$, $mathcal F^Y$ and $mathcal F^Z$ denote the filtraiton generated by $X$, $Y$ and $Z$, respectively
It's easy to see that $$tau:=infleft{ninmathbb N_0:X_n=Y_nright}$$ is an $mathcal F^Z$-stopping time and hence $$tilde Y_n:=1_{left{:n:<:tau:right}}Y_n+1_{left{:n:ge:tau:right}}X_n;;;text{for }ninmathbb N_0$$ is $mathcal F^Z$-adapted. Moreover, $mathcal F^Z=mathcal F^Xveemathcal F^Y$.
How can we show that $tilde Y$ is a time-homogeneous Markov chain with the same distribution as $Y$?
I guess the basic idea is that $Z$ is clearly a time-homogeneous Markov chain with transition kernel $pi$ satisfying $$pi((x,y),B_1times B_2)=kappa(x,B_1)kappa(y,B_2);;;text{for all }x,yin Etext{ and }B_iinmathcal Etag1.$$ Since $mathbb N_0$ is countable, $Z$ is strongly Markovian at $tau$ and hence $$1_{left{:tau:<:infty:right}}operatorname Eleft[fleft(left(Z_{tau+n}right)_{ninmathbb N_0}right)midmathcal F_tauright]=1_{left{:tau:<:infty:right}}(pi f)(Z_tau);;;text{almost surely}tag2,$$ where $pi f:=intpi(;cdot;,{rm d}z)f(z)$, for all bounded and $(mathcal Eotimesmathcal E)^{otimesmathbb N_0}$-measurable $f:(Etimes E)^{mathbb N_0}tomathbb R$. So, if $kinmathbb N_0$, $n_0,ldots,n_kinmathbb N_0$ with $0=n_0<cdots<n_k$ and $Binmathcal E^{otimes k}$, we obtain begin{equation}begin{split}1_{left{:tau:<:infty:right}}operatorname Pleft[left(tilde Y_{tau+n_1},ldots,tilde Y_{tau+n_k}right)in Bmidmathcal F_tauright]&=1_{left{:tau:<:infty:right}}bigotimes_{i=1}^kkappa^{n_i-n_{i-1}}(X_tau,B)\&=1_{left{:tau:<:infty:right}}operatorname Pleft[left(Y_{tau+n_1},ldots,Y_{tau+n_k}right)in Bmidmathcal F_tauright]end{split}tag3end{equation} almost surely.
However, it's neither clear to me how we can conclude that $tilde Y$ is Markovian (with respect to its generated filtration) nor why it has the same distribution as $Y$.
Clearly, the distribution of $Y$ is uniquely determined by the finite-dimensional distributions $operatorname Pleft[left(Y_{n_1},ldots,Y_{n_k}right);cdot;right]$ (and the same applies to $tilde Y$). Moreover, we may write $$operatorname Pleft[left(tilde Y_{n_1},ldots,tilde Y_{n_k}right);cdot;right]=operatorname Pleft[n<tau,left(Y_{n_1},ldots,Y_{n_k}right);cdot;right]+operatorname Pleft[ngetau,left(X_{n_1},ldots,X_{n_k}right);cdot;right]tag4.$$ Many pieces, I'm not able to combine.
probability-theory stochastic-processes markov-chains markov-process coupling
$endgroup$
$begingroup$
Do you assume that $X$ and $Y$ are independent?
$endgroup$
– saz
Jan 13 at 12:02
$begingroup$
@saz Oops! Somehow forgotten to mention that. Yes, of course.
$endgroup$
– 0xbadf00d
Jan 14 at 0:08
add a comment |
$begingroup$
Let
$(Omega,mathcal A,operatorname P)$ be a probability space
$(E,mathcal E)$ be a measurable space
$(X_n)_{ninmathbb N_0}$ and $(Y_n)_{ninmathbb N_0}$ be independent $(E,mathcal E)$-valued time-homogeneous Markov chains on $(Omega,mathcal A,operatorname P)$ with common transition kernel $kappa$ and $$Z_n:=(X_n,Y_n);;;text{for }ninmathbb N_0$$
$mathcal F^X$, $mathcal F^Y$ and $mathcal F^Z$ denote the filtraiton generated by $X$, $Y$ and $Z$, respectively
It's easy to see that $$tau:=infleft{ninmathbb N_0:X_n=Y_nright}$$ is an $mathcal F^Z$-stopping time and hence $$tilde Y_n:=1_{left{:n:<:tau:right}}Y_n+1_{left{:n:ge:tau:right}}X_n;;;text{for }ninmathbb N_0$$ is $mathcal F^Z$-adapted. Moreover, $mathcal F^Z=mathcal F^Xveemathcal F^Y$.
How can we show that $tilde Y$ is a time-homogeneous Markov chain with the same distribution as $Y$?
I guess the basic idea is that $Z$ is clearly a time-homogeneous Markov chain with transition kernel $pi$ satisfying $$pi((x,y),B_1times B_2)=kappa(x,B_1)kappa(y,B_2);;;text{for all }x,yin Etext{ and }B_iinmathcal Etag1.$$ Since $mathbb N_0$ is countable, $Z$ is strongly Markovian at $tau$ and hence $$1_{left{:tau:<:infty:right}}operatorname Eleft[fleft(left(Z_{tau+n}right)_{ninmathbb N_0}right)midmathcal F_tauright]=1_{left{:tau:<:infty:right}}(pi f)(Z_tau);;;text{almost surely}tag2,$$ where $pi f:=intpi(;cdot;,{rm d}z)f(z)$, for all bounded and $(mathcal Eotimesmathcal E)^{otimesmathbb N_0}$-measurable $f:(Etimes E)^{mathbb N_0}tomathbb R$. So, if $kinmathbb N_0$, $n_0,ldots,n_kinmathbb N_0$ with $0=n_0<cdots<n_k$ and $Binmathcal E^{otimes k}$, we obtain begin{equation}begin{split}1_{left{:tau:<:infty:right}}operatorname Pleft[left(tilde Y_{tau+n_1},ldots,tilde Y_{tau+n_k}right)in Bmidmathcal F_tauright]&=1_{left{:tau:<:infty:right}}bigotimes_{i=1}^kkappa^{n_i-n_{i-1}}(X_tau,B)\&=1_{left{:tau:<:infty:right}}operatorname Pleft[left(Y_{tau+n_1},ldots,Y_{tau+n_k}right)in Bmidmathcal F_tauright]end{split}tag3end{equation} almost surely.
However, it's neither clear to me how we can conclude that $tilde Y$ is Markovian (with respect to its generated filtration) nor why it has the same distribution as $Y$.
Clearly, the distribution of $Y$ is uniquely determined by the finite-dimensional distributions $operatorname Pleft[left(Y_{n_1},ldots,Y_{n_k}right);cdot;right]$ (and the same applies to $tilde Y$). Moreover, we may write $$operatorname Pleft[left(tilde Y_{n_1},ldots,tilde Y_{n_k}right);cdot;right]=operatorname Pleft[n<tau,left(Y_{n_1},ldots,Y_{n_k}right);cdot;right]+operatorname Pleft[ngetau,left(X_{n_1},ldots,X_{n_k}right);cdot;right]tag4.$$ Many pieces, I'm not able to combine.
probability-theory stochastic-processes markov-chains markov-process coupling
$endgroup$
Let
$(Omega,mathcal A,operatorname P)$ be a probability space
$(E,mathcal E)$ be a measurable space
$(X_n)_{ninmathbb N_0}$ and $(Y_n)_{ninmathbb N_0}$ be independent $(E,mathcal E)$-valued time-homogeneous Markov chains on $(Omega,mathcal A,operatorname P)$ with common transition kernel $kappa$ and $$Z_n:=(X_n,Y_n);;;text{for }ninmathbb N_0$$
$mathcal F^X$, $mathcal F^Y$ and $mathcal F^Z$ denote the filtraiton generated by $X$, $Y$ and $Z$, respectively
It's easy to see that $$tau:=infleft{ninmathbb N_0:X_n=Y_nright}$$ is an $mathcal F^Z$-stopping time and hence $$tilde Y_n:=1_{left{:n:<:tau:right}}Y_n+1_{left{:n:ge:tau:right}}X_n;;;text{for }ninmathbb N_0$$ is $mathcal F^Z$-adapted. Moreover, $mathcal F^Z=mathcal F^Xveemathcal F^Y$.
How can we show that $tilde Y$ is a time-homogeneous Markov chain with the same distribution as $Y$?
I guess the basic idea is that $Z$ is clearly a time-homogeneous Markov chain with transition kernel $pi$ satisfying $$pi((x,y),B_1times B_2)=kappa(x,B_1)kappa(y,B_2);;;text{for all }x,yin Etext{ and }B_iinmathcal Etag1.$$ Since $mathbb N_0$ is countable, $Z$ is strongly Markovian at $tau$ and hence $$1_{left{:tau:<:infty:right}}operatorname Eleft[fleft(left(Z_{tau+n}right)_{ninmathbb N_0}right)midmathcal F_tauright]=1_{left{:tau:<:infty:right}}(pi f)(Z_tau);;;text{almost surely}tag2,$$ where $pi f:=intpi(;cdot;,{rm d}z)f(z)$, for all bounded and $(mathcal Eotimesmathcal E)^{otimesmathbb N_0}$-measurable $f:(Etimes E)^{mathbb N_0}tomathbb R$. So, if $kinmathbb N_0$, $n_0,ldots,n_kinmathbb N_0$ with $0=n_0<cdots<n_k$ and $Binmathcal E^{otimes k}$, we obtain begin{equation}begin{split}1_{left{:tau:<:infty:right}}operatorname Pleft[left(tilde Y_{tau+n_1},ldots,tilde Y_{tau+n_k}right)in Bmidmathcal F_tauright]&=1_{left{:tau:<:infty:right}}bigotimes_{i=1}^kkappa^{n_i-n_{i-1}}(X_tau,B)\&=1_{left{:tau:<:infty:right}}operatorname Pleft[left(Y_{tau+n_1},ldots,Y_{tau+n_k}right)in Bmidmathcal F_tauright]end{split}tag3end{equation} almost surely.
However, it's neither clear to me how we can conclude that $tilde Y$ is Markovian (with respect to its generated filtration) nor why it has the same distribution as $Y$.
Clearly, the distribution of $Y$ is uniquely determined by the finite-dimensional distributions $operatorname Pleft[left(Y_{n_1},ldots,Y_{n_k}right);cdot;right]$ (and the same applies to $tilde Y$). Moreover, we may write $$operatorname Pleft[left(tilde Y_{n_1},ldots,tilde Y_{n_k}right);cdot;right]=operatorname Pleft[n<tau,left(Y_{n_1},ldots,Y_{n_k}right);cdot;right]+operatorname Pleft[ngetau,left(X_{n_1},ldots,X_{n_k}right);cdot;right]tag4.$$ Many pieces, I'm not able to combine.
probability-theory stochastic-processes markov-chains markov-process coupling
probability-theory stochastic-processes markov-chains markov-process coupling
edited Jan 14 at 0:07
0xbadf00d
asked Jan 10 at 9:35
0xbadf00d0xbadf00d
1,92341532
1,92341532
$begingroup$
Do you assume that $X$ and $Y$ are independent?
$endgroup$
– saz
Jan 13 at 12:02
$begingroup$
@saz Oops! Somehow forgotten to mention that. Yes, of course.
$endgroup$
– 0xbadf00d
Jan 14 at 0:08
add a comment |
$begingroup$
Do you assume that $X$ and $Y$ are independent?
$endgroup$
– saz
Jan 13 at 12:02
$begingroup$
@saz Oops! Somehow forgotten to mention that. Yes, of course.
$endgroup$
– 0xbadf00d
Jan 14 at 0:08
$begingroup$
Do you assume that $X$ and $Y$ are independent?
$endgroup$
– saz
Jan 13 at 12:02
$begingroup$
Do you assume that $X$ and $Y$ are independent?
$endgroup$
– saz
Jan 13 at 12:02
$begingroup$
@saz Oops! Somehow forgotten to mention that. Yes, of course.
$endgroup$
– 0xbadf00d
Jan 14 at 0:08
$begingroup$
@saz Oops! Somehow forgotten to mention that. Yes, of course.
$endgroup$
– 0xbadf00d
Jan 14 at 0:08
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Since $X_{tau} = Y_{tau}$ on ${tau<infty}$ it holds that
$$bar{Y}_n = 1_{{tau geq n}} Y_n + 1_{{tau leq n-1}} X_n.$$
Using that ${tau leq n-1} in mathcal{F}_{n-1}^Z$ we find from the pull out property of conditional expectation that
$$mathbb{E}(f(bar{Y}_n) mid mathcal{F}_{n-1}^Z) = 1_{{tau geq n}} mathbb{E}(f(Y_n) mid mathcal{F}_{n-1}^Z) + 1_{{tau leq n-1}} mathbb{E}(f(X_n) mid mathcal{F}_{n-1}^Z)$$
for any bounded measurable function $f$. Since $X$ and $Y$ are, by assumption, independent it follows (see the lemma below) that
$$mathbb{E}(f(bar{Y}_n) mid mathcal{F}_{n-1}^Z) = 1_{{tau geq n}} mathbb{E}(f(Y_n) mid mathcal{F}_{n-1}^Y) + 1_{{tau leq n-1}} mathbb{E}(f(X_n) mid mathcal{F}_{n-1}^X).$$
By assumption, $X$ and $Y$ are both Markov chains with transition kernel $kappa$, and so
$$begin{align*} mathbb{E}(f(bar{Y}_n) mid mathcal{F}_{n-1}^Z) &= 1_{{tau geq n}} int f(y) , kappa(Y_{n-1},dy) + 1_{{tau leq n-1}} int f(y) , kappa(X_{n-1},dy) \ &= int f(y) , kappa(bar{Y}_{n-1},dy). end{align*}$$
Since $n in mathbb{N}$ is arbitrary, this shows that $(bar{Y}_n)_{n in mathbb{N}}$ is a Markov chain with transition kernel $kappa$.
Lemma Let $Z in L^1(mathbb{P})$ be a random variable which is measurable with respect to a $sigma$-algebra $mathcal{A}$. If $mathcal{G},mathcal{H}$ are further $sigma$-algebras such that $mathcal{H}$ is independent from $sigma(sigma(Z),mathcal{G})$, then $$mathbb{E}(Z mid sigma(mathcal{G},mathcal{H})) = mathbb{E}(Z mid mathcal{G}).$$
$endgroup$
$begingroup$
Your lemma is just that if $mathcal F$ is independent of $mathcal Gveemathcal H$, then $mathcal F$ is conditionally independet of $mathcal H$ given $G$, right? That is clear since $left{G∩H:G∈mathcal Gtext{ and }H∈mathcal Hright}$ is a $cap$-stable generator of $mathcal Gveemathcal H$ and $text P[F∩G∩H]=text P[F]text P[G∩H]=text E[1_F]text E[1_Gtext P[Hmidmathcal G]]=text E[1_{F∩G}text P[Hmidmathcal G]]$ for all $F∈mathcal F$, $G∈mathcal G$ and $H∈mathcal H$ (since $F$ is independent of $G∩H$ and $F$ is independent of $mathcal G$).
$endgroup$
– 0xbadf00d
Jan 14 at 22:32
$begingroup$
@0xbadf00d Note that $mathcal{H}$ is assumed to be independent, not $mathcal{F}$. It might well be that it is possible to formulate the lemma in terms of conditional independence but I don't see the point in it... for the proof I need the lemma the way I formulated it.
$endgroup$
– saz
Jan 15 at 7:38
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068439%2ffind-a-modified-coupling-x-n-tilde-y-n-n%25e2%2588%2588%25e2%2584%2595-0-with-the-same-coupling-tim%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $X_{tau} = Y_{tau}$ on ${tau<infty}$ it holds that
$$bar{Y}_n = 1_{{tau geq n}} Y_n + 1_{{tau leq n-1}} X_n.$$
Using that ${tau leq n-1} in mathcal{F}_{n-1}^Z$ we find from the pull out property of conditional expectation that
$$mathbb{E}(f(bar{Y}_n) mid mathcal{F}_{n-1}^Z) = 1_{{tau geq n}} mathbb{E}(f(Y_n) mid mathcal{F}_{n-1}^Z) + 1_{{tau leq n-1}} mathbb{E}(f(X_n) mid mathcal{F}_{n-1}^Z)$$
for any bounded measurable function $f$. Since $X$ and $Y$ are, by assumption, independent it follows (see the lemma below) that
$$mathbb{E}(f(bar{Y}_n) mid mathcal{F}_{n-1}^Z) = 1_{{tau geq n}} mathbb{E}(f(Y_n) mid mathcal{F}_{n-1}^Y) + 1_{{tau leq n-1}} mathbb{E}(f(X_n) mid mathcal{F}_{n-1}^X).$$
By assumption, $X$ and $Y$ are both Markov chains with transition kernel $kappa$, and so
$$begin{align*} mathbb{E}(f(bar{Y}_n) mid mathcal{F}_{n-1}^Z) &= 1_{{tau geq n}} int f(y) , kappa(Y_{n-1},dy) + 1_{{tau leq n-1}} int f(y) , kappa(X_{n-1},dy) \ &= int f(y) , kappa(bar{Y}_{n-1},dy). end{align*}$$
Since $n in mathbb{N}$ is arbitrary, this shows that $(bar{Y}_n)_{n in mathbb{N}}$ is a Markov chain with transition kernel $kappa$.
Lemma Let $Z in L^1(mathbb{P})$ be a random variable which is measurable with respect to a $sigma$-algebra $mathcal{A}$. If $mathcal{G},mathcal{H}$ are further $sigma$-algebras such that $mathcal{H}$ is independent from $sigma(sigma(Z),mathcal{G})$, then $$mathbb{E}(Z mid sigma(mathcal{G},mathcal{H})) = mathbb{E}(Z mid mathcal{G}).$$
$endgroup$
$begingroup$
Your lemma is just that if $mathcal F$ is independent of $mathcal Gveemathcal H$, then $mathcal F$ is conditionally independet of $mathcal H$ given $G$, right? That is clear since $left{G∩H:G∈mathcal Gtext{ and }H∈mathcal Hright}$ is a $cap$-stable generator of $mathcal Gveemathcal H$ and $text P[F∩G∩H]=text P[F]text P[G∩H]=text E[1_F]text E[1_Gtext P[Hmidmathcal G]]=text E[1_{F∩G}text P[Hmidmathcal G]]$ for all $F∈mathcal F$, $G∈mathcal G$ and $H∈mathcal H$ (since $F$ is independent of $G∩H$ and $F$ is independent of $mathcal G$).
$endgroup$
– 0xbadf00d
Jan 14 at 22:32
$begingroup$
@0xbadf00d Note that $mathcal{H}$ is assumed to be independent, not $mathcal{F}$. It might well be that it is possible to formulate the lemma in terms of conditional independence but I don't see the point in it... for the proof I need the lemma the way I formulated it.
$endgroup$
– saz
Jan 15 at 7:38
add a comment |
$begingroup$
Since $X_{tau} = Y_{tau}$ on ${tau<infty}$ it holds that
$$bar{Y}_n = 1_{{tau geq n}} Y_n + 1_{{tau leq n-1}} X_n.$$
Using that ${tau leq n-1} in mathcal{F}_{n-1}^Z$ we find from the pull out property of conditional expectation that
$$mathbb{E}(f(bar{Y}_n) mid mathcal{F}_{n-1}^Z) = 1_{{tau geq n}} mathbb{E}(f(Y_n) mid mathcal{F}_{n-1}^Z) + 1_{{tau leq n-1}} mathbb{E}(f(X_n) mid mathcal{F}_{n-1}^Z)$$
for any bounded measurable function $f$. Since $X$ and $Y$ are, by assumption, independent it follows (see the lemma below) that
$$mathbb{E}(f(bar{Y}_n) mid mathcal{F}_{n-1}^Z) = 1_{{tau geq n}} mathbb{E}(f(Y_n) mid mathcal{F}_{n-1}^Y) + 1_{{tau leq n-1}} mathbb{E}(f(X_n) mid mathcal{F}_{n-1}^X).$$
By assumption, $X$ and $Y$ are both Markov chains with transition kernel $kappa$, and so
$$begin{align*} mathbb{E}(f(bar{Y}_n) mid mathcal{F}_{n-1}^Z) &= 1_{{tau geq n}} int f(y) , kappa(Y_{n-1},dy) + 1_{{tau leq n-1}} int f(y) , kappa(X_{n-1},dy) \ &= int f(y) , kappa(bar{Y}_{n-1},dy). end{align*}$$
Since $n in mathbb{N}$ is arbitrary, this shows that $(bar{Y}_n)_{n in mathbb{N}}$ is a Markov chain with transition kernel $kappa$.
Lemma Let $Z in L^1(mathbb{P})$ be a random variable which is measurable with respect to a $sigma$-algebra $mathcal{A}$. If $mathcal{G},mathcal{H}$ are further $sigma$-algebras such that $mathcal{H}$ is independent from $sigma(sigma(Z),mathcal{G})$, then $$mathbb{E}(Z mid sigma(mathcal{G},mathcal{H})) = mathbb{E}(Z mid mathcal{G}).$$
$endgroup$
$begingroup$
Your lemma is just that if $mathcal F$ is independent of $mathcal Gveemathcal H$, then $mathcal F$ is conditionally independet of $mathcal H$ given $G$, right? That is clear since $left{G∩H:G∈mathcal Gtext{ and }H∈mathcal Hright}$ is a $cap$-stable generator of $mathcal Gveemathcal H$ and $text P[F∩G∩H]=text P[F]text P[G∩H]=text E[1_F]text E[1_Gtext P[Hmidmathcal G]]=text E[1_{F∩G}text P[Hmidmathcal G]]$ for all $F∈mathcal F$, $G∈mathcal G$ and $H∈mathcal H$ (since $F$ is independent of $G∩H$ and $F$ is independent of $mathcal G$).
$endgroup$
– 0xbadf00d
Jan 14 at 22:32
$begingroup$
@0xbadf00d Note that $mathcal{H}$ is assumed to be independent, not $mathcal{F}$. It might well be that it is possible to formulate the lemma in terms of conditional independence but I don't see the point in it... for the proof I need the lemma the way I formulated it.
$endgroup$
– saz
Jan 15 at 7:38
add a comment |
$begingroup$
Since $X_{tau} = Y_{tau}$ on ${tau<infty}$ it holds that
$$bar{Y}_n = 1_{{tau geq n}} Y_n + 1_{{tau leq n-1}} X_n.$$
Using that ${tau leq n-1} in mathcal{F}_{n-1}^Z$ we find from the pull out property of conditional expectation that
$$mathbb{E}(f(bar{Y}_n) mid mathcal{F}_{n-1}^Z) = 1_{{tau geq n}} mathbb{E}(f(Y_n) mid mathcal{F}_{n-1}^Z) + 1_{{tau leq n-1}} mathbb{E}(f(X_n) mid mathcal{F}_{n-1}^Z)$$
for any bounded measurable function $f$. Since $X$ and $Y$ are, by assumption, independent it follows (see the lemma below) that
$$mathbb{E}(f(bar{Y}_n) mid mathcal{F}_{n-1}^Z) = 1_{{tau geq n}} mathbb{E}(f(Y_n) mid mathcal{F}_{n-1}^Y) + 1_{{tau leq n-1}} mathbb{E}(f(X_n) mid mathcal{F}_{n-1}^X).$$
By assumption, $X$ and $Y$ are both Markov chains with transition kernel $kappa$, and so
$$begin{align*} mathbb{E}(f(bar{Y}_n) mid mathcal{F}_{n-1}^Z) &= 1_{{tau geq n}} int f(y) , kappa(Y_{n-1},dy) + 1_{{tau leq n-1}} int f(y) , kappa(X_{n-1},dy) \ &= int f(y) , kappa(bar{Y}_{n-1},dy). end{align*}$$
Since $n in mathbb{N}$ is arbitrary, this shows that $(bar{Y}_n)_{n in mathbb{N}}$ is a Markov chain with transition kernel $kappa$.
Lemma Let $Z in L^1(mathbb{P})$ be a random variable which is measurable with respect to a $sigma$-algebra $mathcal{A}$. If $mathcal{G},mathcal{H}$ are further $sigma$-algebras such that $mathcal{H}$ is independent from $sigma(sigma(Z),mathcal{G})$, then $$mathbb{E}(Z mid sigma(mathcal{G},mathcal{H})) = mathbb{E}(Z mid mathcal{G}).$$
$endgroup$
Since $X_{tau} = Y_{tau}$ on ${tau<infty}$ it holds that
$$bar{Y}_n = 1_{{tau geq n}} Y_n + 1_{{tau leq n-1}} X_n.$$
Using that ${tau leq n-1} in mathcal{F}_{n-1}^Z$ we find from the pull out property of conditional expectation that
$$mathbb{E}(f(bar{Y}_n) mid mathcal{F}_{n-1}^Z) = 1_{{tau geq n}} mathbb{E}(f(Y_n) mid mathcal{F}_{n-1}^Z) + 1_{{tau leq n-1}} mathbb{E}(f(X_n) mid mathcal{F}_{n-1}^Z)$$
for any bounded measurable function $f$. Since $X$ and $Y$ are, by assumption, independent it follows (see the lemma below) that
$$mathbb{E}(f(bar{Y}_n) mid mathcal{F}_{n-1}^Z) = 1_{{tau geq n}} mathbb{E}(f(Y_n) mid mathcal{F}_{n-1}^Y) + 1_{{tau leq n-1}} mathbb{E}(f(X_n) mid mathcal{F}_{n-1}^X).$$
By assumption, $X$ and $Y$ are both Markov chains with transition kernel $kappa$, and so
$$begin{align*} mathbb{E}(f(bar{Y}_n) mid mathcal{F}_{n-1}^Z) &= 1_{{tau geq n}} int f(y) , kappa(Y_{n-1},dy) + 1_{{tau leq n-1}} int f(y) , kappa(X_{n-1},dy) \ &= int f(y) , kappa(bar{Y}_{n-1},dy). end{align*}$$
Since $n in mathbb{N}$ is arbitrary, this shows that $(bar{Y}_n)_{n in mathbb{N}}$ is a Markov chain with transition kernel $kappa$.
Lemma Let $Z in L^1(mathbb{P})$ be a random variable which is measurable with respect to a $sigma$-algebra $mathcal{A}$. If $mathcal{G},mathcal{H}$ are further $sigma$-algebras such that $mathcal{H}$ is independent from $sigma(sigma(Z),mathcal{G})$, then $$mathbb{E}(Z mid sigma(mathcal{G},mathcal{H})) = mathbb{E}(Z mid mathcal{G}).$$
edited Jan 14 at 17:49
answered Jan 14 at 16:40
sazsaz
81.3k861127
81.3k861127
$begingroup$
Your lemma is just that if $mathcal F$ is independent of $mathcal Gveemathcal H$, then $mathcal F$ is conditionally independet of $mathcal H$ given $G$, right? That is clear since $left{G∩H:G∈mathcal Gtext{ and }H∈mathcal Hright}$ is a $cap$-stable generator of $mathcal Gveemathcal H$ and $text P[F∩G∩H]=text P[F]text P[G∩H]=text E[1_F]text E[1_Gtext P[Hmidmathcal G]]=text E[1_{F∩G}text P[Hmidmathcal G]]$ for all $F∈mathcal F$, $G∈mathcal G$ and $H∈mathcal H$ (since $F$ is independent of $G∩H$ and $F$ is independent of $mathcal G$).
$endgroup$
– 0xbadf00d
Jan 14 at 22:32
$begingroup$
@0xbadf00d Note that $mathcal{H}$ is assumed to be independent, not $mathcal{F}$. It might well be that it is possible to formulate the lemma in terms of conditional independence but I don't see the point in it... for the proof I need the lemma the way I formulated it.
$endgroup$
– saz
Jan 15 at 7:38
add a comment |
$begingroup$
Your lemma is just that if $mathcal F$ is independent of $mathcal Gveemathcal H$, then $mathcal F$ is conditionally independet of $mathcal H$ given $G$, right? That is clear since $left{G∩H:G∈mathcal Gtext{ and }H∈mathcal Hright}$ is a $cap$-stable generator of $mathcal Gveemathcal H$ and $text P[F∩G∩H]=text P[F]text P[G∩H]=text E[1_F]text E[1_Gtext P[Hmidmathcal G]]=text E[1_{F∩G}text P[Hmidmathcal G]]$ for all $F∈mathcal F$, $G∈mathcal G$ and $H∈mathcal H$ (since $F$ is independent of $G∩H$ and $F$ is independent of $mathcal G$).
$endgroup$
– 0xbadf00d
Jan 14 at 22:32
$begingroup$
@0xbadf00d Note that $mathcal{H}$ is assumed to be independent, not $mathcal{F}$. It might well be that it is possible to formulate the lemma in terms of conditional independence but I don't see the point in it... for the proof I need the lemma the way I formulated it.
$endgroup$
– saz
Jan 15 at 7:38
$begingroup$
Your lemma is just that if $mathcal F$ is independent of $mathcal Gveemathcal H$, then $mathcal F$ is conditionally independet of $mathcal H$ given $G$, right? That is clear since $left{G∩H:G∈mathcal Gtext{ and }H∈mathcal Hright}$ is a $cap$-stable generator of $mathcal Gveemathcal H$ and $text P[F∩G∩H]=text P[F]text P[G∩H]=text E[1_F]text E[1_Gtext P[Hmidmathcal G]]=text E[1_{F∩G}text P[Hmidmathcal G]]$ for all $F∈mathcal F$, $G∈mathcal G$ and $H∈mathcal H$ (since $F$ is independent of $G∩H$ and $F$ is independent of $mathcal G$).
$endgroup$
– 0xbadf00d
Jan 14 at 22:32
$begingroup$
Your lemma is just that if $mathcal F$ is independent of $mathcal Gveemathcal H$, then $mathcal F$ is conditionally independet of $mathcal H$ given $G$, right? That is clear since $left{G∩H:G∈mathcal Gtext{ and }H∈mathcal Hright}$ is a $cap$-stable generator of $mathcal Gveemathcal H$ and $text P[F∩G∩H]=text P[F]text P[G∩H]=text E[1_F]text E[1_Gtext P[Hmidmathcal G]]=text E[1_{F∩G}text P[Hmidmathcal G]]$ for all $F∈mathcal F$, $G∈mathcal G$ and $H∈mathcal H$ (since $F$ is independent of $G∩H$ and $F$ is independent of $mathcal G$).
$endgroup$
– 0xbadf00d
Jan 14 at 22:32
$begingroup$
@0xbadf00d Note that $mathcal{H}$ is assumed to be independent, not $mathcal{F}$. It might well be that it is possible to formulate the lemma in terms of conditional independence but I don't see the point in it... for the proof I need the lemma the way I formulated it.
$endgroup$
– saz
Jan 15 at 7:38
$begingroup$
@0xbadf00d Note that $mathcal{H}$ is assumed to be independent, not $mathcal{F}$. It might well be that it is possible to formulate the lemma in terms of conditional independence but I don't see the point in it... for the proof I need the lemma the way I formulated it.
$endgroup$
– saz
Jan 15 at 7:38
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068439%2ffind-a-modified-coupling-x-n-tilde-y-n-n%25e2%2588%2588%25e2%2584%2595-0-with-the-same-coupling-tim%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Do you assume that $X$ and $Y$ are independent?
$endgroup$
– saz
Jan 13 at 12:02
$begingroup$
@saz Oops! Somehow forgotten to mention that. Yes, of course.
$endgroup$
– 0xbadf00d
Jan 14 at 0:08