Iwahori versus Bruhat decompositions












10












$begingroup$


I am faced with the following issue that I do not understand but seems contradictory, coming from the book of Roberts and Schmidt about $GSp(4)$. Consider a local non-archimedean field $F$, let $p$ be its maximal ideal, $mathcal{O}$ its ring of integers and $G=GSp(4, F)$. We are interested in the following Klingen congruence subgroup
$$K =
left(
begin{array}{cccc}
mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
p & mathcal{O} & mathcal{O} & mathcal{O} \
p & mathcal{O} & mathcal{O} & mathcal{O} \
p & p & p & mathcal{O}
end{array}
right)
$$



(from now on all the subgroups written in this matrix-entries form is meant to be their intersection with $GSp(4, F)$. I am interested in computing the index of this subgroup in the maximal compact subgroup $K_0$ (where all the entries are integers).



Iwahori decomposition
We have
$$
K =
left(
begin{array}{cccc}
1 & & & \
p & 1 & & \
p & & 1 & \
p & p & p & 1
end{array}
right)
left(
begin{array}{cccc}
mathcal{O}^times & & & \
& mathcal{O} & mathcal{O} & \
& mathcal{O} & mathcal{O} & \
& & & mathcal{O}^times
end{array}
right)
left(
begin{array}{cccc}
1 & mathcal{O} & mathcal{O} & mathcal{O} \
& 1 & & mathcal{O} \
& & 1 & mathcal{O} \
& & & 1
end{array}
right)
$$



so that in particular by decomposing the left subgroup we should obtain
$$
left(
begin{array}{cccc}
mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O}
end{array}
right)
=
bigsqcup_{a, b, c in mathcal{O}/p}
left(
begin{array}{cccc}
1 & & & \
a & 1 & & \
b & & 1 & \
c & b & -a & 1
end{array}
right)
K
$$



(where the fact that the entries on the right are this way comes from the conditions of belonging to $GSp(4)$). So that in particular the index should be, writting $N(p)$ for the norm of $p$,




$$[K_0:K] =N(p)^3$$




Bruhat decomposition
On the other hand, introducing the subgroup
$$
Q =
left(
begin{array}{cccc}
mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
& mathcal{O} & mathcal{O} & mathcal{O} \
& mathcal{O} & mathcal{O} & mathcal{O} \
& & & mathcal{O}
end{array}
right)
$$



the Bruhat decomposition yields that for any field $k$,
$$
GSp(4, k) = Q
sqcup Qx
left(
begin{array}{cccc}
1 & k & & \
& 1 & & \
& & 1 & k \
& & & 1
end{array}
right)
sqcup
Qxy
left(
begin{array}{cccc}
1 & & k & \
& 1 & k & k \
& & 1 & \
& & & 1
end{array}
right)
sqcup
Qxyx
left(
begin{array}{cccc}
1 & k & k & k\
& 1 & & k\
& & 1 & k \
& & & 1
end{array}
right)
$$



where the transformations $x$ and $y$ are defined by
$$x=
left(
begin{array}{cccc}
& 1& & \
1 & & & \
& & & 1 \
& &1 &
end{array}
right)
$$

$$y =
left(
begin{array}{cccc}
1 & & &\
& & 1 & \
& -1 & & \
& & & 1
end{array}
right)
$$



In particular if $k$ is the finite field with $N(p)$ elements, the index we search for is exactly the cardinality of $GSp(4,k) / Q$, and this one is $(1+N(p))(1+N(p)^2)$, so that we should say




$$[K_0:K] =(1+N(p))(1+N(p)^2)$$




Here is the question following from this discussion:




Both results are different even if asymptotically equivalent, what is
happening?











share|cite|improve this question











$endgroup$

















    10












    $begingroup$


    I am faced with the following issue that I do not understand but seems contradictory, coming from the book of Roberts and Schmidt about $GSp(4)$. Consider a local non-archimedean field $F$, let $p$ be its maximal ideal, $mathcal{O}$ its ring of integers and $G=GSp(4, F)$. We are interested in the following Klingen congruence subgroup
    $$K =
    left(
    begin{array}{cccc}
    mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
    p & mathcal{O} & mathcal{O} & mathcal{O} \
    p & mathcal{O} & mathcal{O} & mathcal{O} \
    p & p & p & mathcal{O}
    end{array}
    right)
    $$



    (from now on all the subgroups written in this matrix-entries form is meant to be their intersection with $GSp(4, F)$. I am interested in computing the index of this subgroup in the maximal compact subgroup $K_0$ (where all the entries are integers).



    Iwahori decomposition
    We have
    $$
    K =
    left(
    begin{array}{cccc}
    1 & & & \
    p & 1 & & \
    p & & 1 & \
    p & p & p & 1
    end{array}
    right)
    left(
    begin{array}{cccc}
    mathcal{O}^times & & & \
    & mathcal{O} & mathcal{O} & \
    & mathcal{O} & mathcal{O} & \
    & & & mathcal{O}^times
    end{array}
    right)
    left(
    begin{array}{cccc}
    1 & mathcal{O} & mathcal{O} & mathcal{O} \
    & 1 & & mathcal{O} \
    & & 1 & mathcal{O} \
    & & & 1
    end{array}
    right)
    $$



    so that in particular by decomposing the left subgroup we should obtain
    $$
    left(
    begin{array}{cccc}
    mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
    mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
    mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
    mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O}
    end{array}
    right)
    =
    bigsqcup_{a, b, c in mathcal{O}/p}
    left(
    begin{array}{cccc}
    1 & & & \
    a & 1 & & \
    b & & 1 & \
    c & b & -a & 1
    end{array}
    right)
    K
    $$



    (where the fact that the entries on the right are this way comes from the conditions of belonging to $GSp(4)$). So that in particular the index should be, writting $N(p)$ for the norm of $p$,




    $$[K_0:K] =N(p)^3$$




    Bruhat decomposition
    On the other hand, introducing the subgroup
    $$
    Q =
    left(
    begin{array}{cccc}
    mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
    & mathcal{O} & mathcal{O} & mathcal{O} \
    & mathcal{O} & mathcal{O} & mathcal{O} \
    & & & mathcal{O}
    end{array}
    right)
    $$



    the Bruhat decomposition yields that for any field $k$,
    $$
    GSp(4, k) = Q
    sqcup Qx
    left(
    begin{array}{cccc}
    1 & k & & \
    & 1 & & \
    & & 1 & k \
    & & & 1
    end{array}
    right)
    sqcup
    Qxy
    left(
    begin{array}{cccc}
    1 & & k & \
    & 1 & k & k \
    & & 1 & \
    & & & 1
    end{array}
    right)
    sqcup
    Qxyx
    left(
    begin{array}{cccc}
    1 & k & k & k\
    & 1 & & k\
    & & 1 & k \
    & & & 1
    end{array}
    right)
    $$



    where the transformations $x$ and $y$ are defined by
    $$x=
    left(
    begin{array}{cccc}
    & 1& & \
    1 & & & \
    & & & 1 \
    & &1 &
    end{array}
    right)
    $$

    $$y =
    left(
    begin{array}{cccc}
    1 & & &\
    & & 1 & \
    & -1 & & \
    & & & 1
    end{array}
    right)
    $$



    In particular if $k$ is the finite field with $N(p)$ elements, the index we search for is exactly the cardinality of $GSp(4,k) / Q$, and this one is $(1+N(p))(1+N(p)^2)$, so that we should say




    $$[K_0:K] =(1+N(p))(1+N(p)^2)$$




    Here is the question following from this discussion:




    Both results are different even if asymptotically equivalent, what is
    happening?











    share|cite|improve this question











    $endgroup$















      10












      10








      10


      1



      $begingroup$


      I am faced with the following issue that I do not understand but seems contradictory, coming from the book of Roberts and Schmidt about $GSp(4)$. Consider a local non-archimedean field $F$, let $p$ be its maximal ideal, $mathcal{O}$ its ring of integers and $G=GSp(4, F)$. We are interested in the following Klingen congruence subgroup
      $$K =
      left(
      begin{array}{cccc}
      mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
      p & mathcal{O} & mathcal{O} & mathcal{O} \
      p & mathcal{O} & mathcal{O} & mathcal{O} \
      p & p & p & mathcal{O}
      end{array}
      right)
      $$



      (from now on all the subgroups written in this matrix-entries form is meant to be their intersection with $GSp(4, F)$. I am interested in computing the index of this subgroup in the maximal compact subgroup $K_0$ (where all the entries are integers).



      Iwahori decomposition
      We have
      $$
      K =
      left(
      begin{array}{cccc}
      1 & & & \
      p & 1 & & \
      p & & 1 & \
      p & p & p & 1
      end{array}
      right)
      left(
      begin{array}{cccc}
      mathcal{O}^times & & & \
      & mathcal{O} & mathcal{O} & \
      & mathcal{O} & mathcal{O} & \
      & & & mathcal{O}^times
      end{array}
      right)
      left(
      begin{array}{cccc}
      1 & mathcal{O} & mathcal{O} & mathcal{O} \
      & 1 & & mathcal{O} \
      & & 1 & mathcal{O} \
      & & & 1
      end{array}
      right)
      $$



      so that in particular by decomposing the left subgroup we should obtain
      $$
      left(
      begin{array}{cccc}
      mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
      mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
      mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
      mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O}
      end{array}
      right)
      =
      bigsqcup_{a, b, c in mathcal{O}/p}
      left(
      begin{array}{cccc}
      1 & & & \
      a & 1 & & \
      b & & 1 & \
      c & b & -a & 1
      end{array}
      right)
      K
      $$



      (where the fact that the entries on the right are this way comes from the conditions of belonging to $GSp(4)$). So that in particular the index should be, writting $N(p)$ for the norm of $p$,




      $$[K_0:K] =N(p)^3$$




      Bruhat decomposition
      On the other hand, introducing the subgroup
      $$
      Q =
      left(
      begin{array}{cccc}
      mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
      & mathcal{O} & mathcal{O} & mathcal{O} \
      & mathcal{O} & mathcal{O} & mathcal{O} \
      & & & mathcal{O}
      end{array}
      right)
      $$



      the Bruhat decomposition yields that for any field $k$,
      $$
      GSp(4, k) = Q
      sqcup Qx
      left(
      begin{array}{cccc}
      1 & k & & \
      & 1 & & \
      & & 1 & k \
      & & & 1
      end{array}
      right)
      sqcup
      Qxy
      left(
      begin{array}{cccc}
      1 & & k & \
      & 1 & k & k \
      & & 1 & \
      & & & 1
      end{array}
      right)
      sqcup
      Qxyx
      left(
      begin{array}{cccc}
      1 & k & k & k\
      & 1 & & k\
      & & 1 & k \
      & & & 1
      end{array}
      right)
      $$



      where the transformations $x$ and $y$ are defined by
      $$x=
      left(
      begin{array}{cccc}
      & 1& & \
      1 & & & \
      & & & 1 \
      & &1 &
      end{array}
      right)
      $$

      $$y =
      left(
      begin{array}{cccc}
      1 & & &\
      & & 1 & \
      & -1 & & \
      & & & 1
      end{array}
      right)
      $$



      In particular if $k$ is the finite field with $N(p)$ elements, the index we search for is exactly the cardinality of $GSp(4,k) / Q$, and this one is $(1+N(p))(1+N(p)^2)$, so that we should say




      $$[K_0:K] =(1+N(p))(1+N(p)^2)$$




      Here is the question following from this discussion:




      Both results are different even if asymptotically equivalent, what is
      happening?











      share|cite|improve this question











      $endgroup$




      I am faced with the following issue that I do not understand but seems contradictory, coming from the book of Roberts and Schmidt about $GSp(4)$. Consider a local non-archimedean field $F$, let $p$ be its maximal ideal, $mathcal{O}$ its ring of integers and $G=GSp(4, F)$. We are interested in the following Klingen congruence subgroup
      $$K =
      left(
      begin{array}{cccc}
      mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
      p & mathcal{O} & mathcal{O} & mathcal{O} \
      p & mathcal{O} & mathcal{O} & mathcal{O} \
      p & p & p & mathcal{O}
      end{array}
      right)
      $$



      (from now on all the subgroups written in this matrix-entries form is meant to be their intersection with $GSp(4, F)$. I am interested in computing the index of this subgroup in the maximal compact subgroup $K_0$ (where all the entries are integers).



      Iwahori decomposition
      We have
      $$
      K =
      left(
      begin{array}{cccc}
      1 & & & \
      p & 1 & & \
      p & & 1 & \
      p & p & p & 1
      end{array}
      right)
      left(
      begin{array}{cccc}
      mathcal{O}^times & & & \
      & mathcal{O} & mathcal{O} & \
      & mathcal{O} & mathcal{O} & \
      & & & mathcal{O}^times
      end{array}
      right)
      left(
      begin{array}{cccc}
      1 & mathcal{O} & mathcal{O} & mathcal{O} \
      & 1 & & mathcal{O} \
      & & 1 & mathcal{O} \
      & & & 1
      end{array}
      right)
      $$



      so that in particular by decomposing the left subgroup we should obtain
      $$
      left(
      begin{array}{cccc}
      mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
      mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
      mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
      mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O}
      end{array}
      right)
      =
      bigsqcup_{a, b, c in mathcal{O}/p}
      left(
      begin{array}{cccc}
      1 & & & \
      a & 1 & & \
      b & & 1 & \
      c & b & -a & 1
      end{array}
      right)
      K
      $$



      (where the fact that the entries on the right are this way comes from the conditions of belonging to $GSp(4)$). So that in particular the index should be, writting $N(p)$ for the norm of $p$,




      $$[K_0:K] =N(p)^3$$




      Bruhat decomposition
      On the other hand, introducing the subgroup
      $$
      Q =
      left(
      begin{array}{cccc}
      mathcal{O} & mathcal{O} & mathcal{O} & mathcal{O} \
      & mathcal{O} & mathcal{O} & mathcal{O} \
      & mathcal{O} & mathcal{O} & mathcal{O} \
      & & & mathcal{O}
      end{array}
      right)
      $$



      the Bruhat decomposition yields that for any field $k$,
      $$
      GSp(4, k) = Q
      sqcup Qx
      left(
      begin{array}{cccc}
      1 & k & & \
      & 1 & & \
      & & 1 & k \
      & & & 1
      end{array}
      right)
      sqcup
      Qxy
      left(
      begin{array}{cccc}
      1 & & k & \
      & 1 & k & k \
      & & 1 & \
      & & & 1
      end{array}
      right)
      sqcup
      Qxyx
      left(
      begin{array}{cccc}
      1 & k & k & k\
      & 1 & & k\
      & & 1 & k \
      & & & 1
      end{array}
      right)
      $$



      where the transformations $x$ and $y$ are defined by
      $$x=
      left(
      begin{array}{cccc}
      & 1& & \
      1 & & & \
      & & & 1 \
      & &1 &
      end{array}
      right)
      $$

      $$y =
      left(
      begin{array}{cccc}
      1 & & &\
      & & 1 & \
      & -1 & & \
      & & & 1
      end{array}
      right)
      $$



      In particular if $k$ is the finite field with $N(p)$ elements, the index we search for is exactly the cardinality of $GSp(4,k) / Q$, and this one is $(1+N(p))(1+N(p)^2)$, so that we should say




      $$[K_0:K] =(1+N(p))(1+N(p)^2)$$




      Here is the question following from this discussion:




      Both results are different even if asymptotically equivalent, what is
      happening?








      group-theory number-theory proof-verification






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 13 at 9:40







      TheStudent

















      asked Jan 10 at 9:21









      TheStudentTheStudent

      3239




      3239






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068424%2fiwahori-versus-bruhat-decompositions%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068424%2fiwahori-versus-bruhat-decompositions%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Human spaceflight

          Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

          張江高科駅