Evaluate 1 + 3/4 + (3*5)/(4*8)+…
$begingroup$
Evaluate
1 + 3/4 + (3.5)/(4.8) + (3.5.7)/(4.8.12) +...
I have simplified it to
Summation ((2k+1)!)/(k!)(k!)) (1/8)^k where k varies from 0 to infinity.
I am not able to to relate this sum with Taylor expansion of some function
real-analysis taylor-expansion
$endgroup$
add a comment |
$begingroup$
Evaluate
1 + 3/4 + (3.5)/(4.8) + (3.5.7)/(4.8.12) +...
I have simplified it to
Summation ((2k+1)!)/(k!)(k!)) (1/8)^k where k varies from 0 to infinity.
I am not able to to relate this sum with Taylor expansion of some function
real-analysis taylor-expansion
$endgroup$
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Jan 9 at 5:17
add a comment |
$begingroup$
Evaluate
1 + 3/4 + (3.5)/(4.8) + (3.5.7)/(4.8.12) +...
I have simplified it to
Summation ((2k+1)!)/(k!)(k!)) (1/8)^k where k varies from 0 to infinity.
I am not able to to relate this sum with Taylor expansion of some function
real-analysis taylor-expansion
$endgroup$
Evaluate
1 + 3/4 + (3.5)/(4.8) + (3.5.7)/(4.8.12) +...
I have simplified it to
Summation ((2k+1)!)/(k!)(k!)) (1/8)^k where k varies from 0 to infinity.
I am not able to to relate this sum with Taylor expansion of some function
real-analysis taylor-expansion
real-analysis taylor-expansion
asked Jan 9 at 4:45
Swapnil Swapnil
415
415
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Jan 9 at 5:17
add a comment |
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Jan 9 at 5:17
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Jan 9 at 5:17
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Jan 9 at 5:17
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Sounds like you are looking for
$$
sum_{k = 0}^infty (2k+1) binom{2k}{k}left( frac18 right)^k,
$$
so consider differentiating
$$
f(x) = sum_{k = 0}^infty binom{2k}{k} x^{2k+1},
$$
and using $(1/8)^k = (1/sqrt8)^{2k}$
$endgroup$
add a comment |
$begingroup$
the series is the binomial expansion of
$$
bigg(1 - frac12 bigg)^{-frac32}
$$
which gives the sum $2sqrt{2}$
$endgroup$
1
$begingroup$
MathJax hint: if you use left and right before parentheses and other delimiters they autosize based on what is inside.
$endgroup$
– Ross Millikan
Jan 9 at 5:43
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067083%2fevaluate-1-3-4-35-48%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Sounds like you are looking for
$$
sum_{k = 0}^infty (2k+1) binom{2k}{k}left( frac18 right)^k,
$$
so consider differentiating
$$
f(x) = sum_{k = 0}^infty binom{2k}{k} x^{2k+1},
$$
and using $(1/8)^k = (1/sqrt8)^{2k}$
$endgroup$
add a comment |
$begingroup$
Sounds like you are looking for
$$
sum_{k = 0}^infty (2k+1) binom{2k}{k}left( frac18 right)^k,
$$
so consider differentiating
$$
f(x) = sum_{k = 0}^infty binom{2k}{k} x^{2k+1},
$$
and using $(1/8)^k = (1/sqrt8)^{2k}$
$endgroup$
add a comment |
$begingroup$
Sounds like you are looking for
$$
sum_{k = 0}^infty (2k+1) binom{2k}{k}left( frac18 right)^k,
$$
so consider differentiating
$$
f(x) = sum_{k = 0}^infty binom{2k}{k} x^{2k+1},
$$
and using $(1/8)^k = (1/sqrt8)^{2k}$
$endgroup$
Sounds like you are looking for
$$
sum_{k = 0}^infty (2k+1) binom{2k}{k}left( frac18 right)^k,
$$
so consider differentiating
$$
f(x) = sum_{k = 0}^infty binom{2k}{k} x^{2k+1},
$$
and using $(1/8)^k = (1/sqrt8)^{2k}$
answered Jan 9 at 4:57
gt6989bgt6989b
34.3k22455
34.3k22455
add a comment |
add a comment |
$begingroup$
the series is the binomial expansion of
$$
bigg(1 - frac12 bigg)^{-frac32}
$$
which gives the sum $2sqrt{2}$
$endgroup$
1
$begingroup$
MathJax hint: if you use left and right before parentheses and other delimiters they autosize based on what is inside.
$endgroup$
– Ross Millikan
Jan 9 at 5:43
add a comment |
$begingroup$
the series is the binomial expansion of
$$
bigg(1 - frac12 bigg)^{-frac32}
$$
which gives the sum $2sqrt{2}$
$endgroup$
1
$begingroup$
MathJax hint: if you use left and right before parentheses and other delimiters they autosize based on what is inside.
$endgroup$
– Ross Millikan
Jan 9 at 5:43
add a comment |
$begingroup$
the series is the binomial expansion of
$$
bigg(1 - frac12 bigg)^{-frac32}
$$
which gives the sum $2sqrt{2}$
$endgroup$
the series is the binomial expansion of
$$
bigg(1 - frac12 bigg)^{-frac32}
$$
which gives the sum $2sqrt{2}$
edited Jan 9 at 5:42
Ross Millikan
297k23198371
297k23198371
answered Jan 9 at 5:27
David HoldenDavid Holden
14.9k21224
14.9k21224
1
$begingroup$
MathJax hint: if you use left and right before parentheses and other delimiters they autosize based on what is inside.
$endgroup$
– Ross Millikan
Jan 9 at 5:43
add a comment |
1
$begingroup$
MathJax hint: if you use left and right before parentheses and other delimiters they autosize based on what is inside.
$endgroup$
– Ross Millikan
Jan 9 at 5:43
1
1
$begingroup$
MathJax hint: if you use left and right before parentheses and other delimiters they autosize based on what is inside.
$endgroup$
– Ross Millikan
Jan 9 at 5:43
$begingroup$
MathJax hint: if you use left and right before parentheses and other delimiters they autosize based on what is inside.
$endgroup$
– Ross Millikan
Jan 9 at 5:43
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067083%2fevaluate-1-3-4-35-48%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Jan 9 at 5:17