Computing Fréchet derivative of $F(f)(x) = int^{x}_{0} cos(f(t)^{2})dt, x in [0,1]$
$begingroup$
Let $X = mathcal{C} left( [0,1] right)$ be the Banach space of continuous functions on $[0,1]$ (with the supremum norm) and define a map $F : X rightarrow X$ by
$$F(f)(x) = int^{x}_{0} cos(f(t)^{2})dt, x in [0,1].$$
Show that $F$ is Fréchet differentiable and compute the Fréchet derivative
$DF|_{f}$ for each $f in X.$
So far I have the following.
Using the identity $cos(A+varepsilon B)=cos(A)-varepsilon Bsin(A)+mathcal{O}(varepsilon^2).$ We have
begin{align*}F(f+h)(x)
&=int^{x}_{0} cos((f(t)+h(t))^{2})dt \
&=int^{x}_{0}cos(f^2(t))-h(t)[2f(t)h(t)]sin(f^2(t))+mathcal{O}(h^2(t))dt \
&=F(f)(x)+int^{x}_{0}-2f(t)(h(t)text{sin}(f^2(t))-h^2(t)sin(f^2(t))+mathcal{O}(h^2(t))dt \
end{align*}
Let $T(h)=int^{x}_{0}-2f(t)(h(t)sin(f^2(t))dt$. I am able to show that $T(h)$ is a linear map. Then we have
$$F(f+h)(x)-F(f)(x)=T(h)+int^{x}_{0}mathcal{O}(h^2(t))dt $$
I am confused about the Big-$mathcal{O}$ notation and I do not understand what it would mean to integrate over it. Also, am I on the right track? Thank you in advance for any help provided.
real-analysis functional-analysis operator-theory asymptotics frechet-derivative
$endgroup$
add a comment |
$begingroup$
Let $X = mathcal{C} left( [0,1] right)$ be the Banach space of continuous functions on $[0,1]$ (with the supremum norm) and define a map $F : X rightarrow X$ by
$$F(f)(x) = int^{x}_{0} cos(f(t)^{2})dt, x in [0,1].$$
Show that $F$ is Fréchet differentiable and compute the Fréchet derivative
$DF|_{f}$ for each $f in X.$
So far I have the following.
Using the identity $cos(A+varepsilon B)=cos(A)-varepsilon Bsin(A)+mathcal{O}(varepsilon^2).$ We have
begin{align*}F(f+h)(x)
&=int^{x}_{0} cos((f(t)+h(t))^{2})dt \
&=int^{x}_{0}cos(f^2(t))-h(t)[2f(t)h(t)]sin(f^2(t))+mathcal{O}(h^2(t))dt \
&=F(f)(x)+int^{x}_{0}-2f(t)(h(t)text{sin}(f^2(t))-h^2(t)sin(f^2(t))+mathcal{O}(h^2(t))dt \
end{align*}
Let $T(h)=int^{x}_{0}-2f(t)(h(t)sin(f^2(t))dt$. I am able to show that $T(h)$ is a linear map. Then we have
$$F(f+h)(x)-F(f)(x)=T(h)+int^{x}_{0}mathcal{O}(h^2(t))dt $$
I am confused about the Big-$mathcal{O}$ notation and I do not understand what it would mean to integrate over it. Also, am I on the right track? Thank you in advance for any help provided.
real-analysis functional-analysis operator-theory asymptotics frechet-derivative
$endgroup$
1
$begingroup$
You're missing some parentheses after "Let $T(h) = dots$"
$endgroup$
– 0x539
Jan 3 at 14:59
add a comment |
$begingroup$
Let $X = mathcal{C} left( [0,1] right)$ be the Banach space of continuous functions on $[0,1]$ (with the supremum norm) and define a map $F : X rightarrow X$ by
$$F(f)(x) = int^{x}_{0} cos(f(t)^{2})dt, x in [0,1].$$
Show that $F$ is Fréchet differentiable and compute the Fréchet derivative
$DF|_{f}$ for each $f in X.$
So far I have the following.
Using the identity $cos(A+varepsilon B)=cos(A)-varepsilon Bsin(A)+mathcal{O}(varepsilon^2).$ We have
begin{align*}F(f+h)(x)
&=int^{x}_{0} cos((f(t)+h(t))^{2})dt \
&=int^{x}_{0}cos(f^2(t))-h(t)[2f(t)h(t)]sin(f^2(t))+mathcal{O}(h^2(t))dt \
&=F(f)(x)+int^{x}_{0}-2f(t)(h(t)text{sin}(f^2(t))-h^2(t)sin(f^2(t))+mathcal{O}(h^2(t))dt \
end{align*}
Let $T(h)=int^{x}_{0}-2f(t)(h(t)sin(f^2(t))dt$. I am able to show that $T(h)$ is a linear map. Then we have
$$F(f+h)(x)-F(f)(x)=T(h)+int^{x}_{0}mathcal{O}(h^2(t))dt $$
I am confused about the Big-$mathcal{O}$ notation and I do not understand what it would mean to integrate over it. Also, am I on the right track? Thank you in advance for any help provided.
real-analysis functional-analysis operator-theory asymptotics frechet-derivative
$endgroup$
Let $X = mathcal{C} left( [0,1] right)$ be the Banach space of continuous functions on $[0,1]$ (with the supremum norm) and define a map $F : X rightarrow X$ by
$$F(f)(x) = int^{x}_{0} cos(f(t)^{2})dt, x in [0,1].$$
Show that $F$ is Fréchet differentiable and compute the Fréchet derivative
$DF|_{f}$ for each $f in X.$
So far I have the following.
Using the identity $cos(A+varepsilon B)=cos(A)-varepsilon Bsin(A)+mathcal{O}(varepsilon^2).$ We have
begin{align*}F(f+h)(x)
&=int^{x}_{0} cos((f(t)+h(t))^{2})dt \
&=int^{x}_{0}cos(f^2(t))-h(t)[2f(t)h(t)]sin(f^2(t))+mathcal{O}(h^2(t))dt \
&=F(f)(x)+int^{x}_{0}-2f(t)(h(t)text{sin}(f^2(t))-h^2(t)sin(f^2(t))+mathcal{O}(h^2(t))dt \
end{align*}
Let $T(h)=int^{x}_{0}-2f(t)(h(t)sin(f^2(t))dt$. I am able to show that $T(h)$ is a linear map. Then we have
$$F(f+h)(x)-F(f)(x)=T(h)+int^{x}_{0}mathcal{O}(h^2(t))dt $$
I am confused about the Big-$mathcal{O}$ notation and I do not understand what it would mean to integrate over it. Also, am I on the right track? Thank you in advance for any help provided.
real-analysis functional-analysis operator-theory asymptotics frechet-derivative
real-analysis functional-analysis operator-theory asymptotics frechet-derivative
edited Jan 4 at 0:08
Gaby Alfonso
asked Oct 29 '18 at 7:52
Gaby AlfonsoGaby Alfonso
693315
693315
1
$begingroup$
You're missing some parentheses after "Let $T(h) = dots$"
$endgroup$
– 0x539
Jan 3 at 14:59
add a comment |
1
$begingroup$
You're missing some parentheses after "Let $T(h) = dots$"
$endgroup$
– 0x539
Jan 3 at 14:59
1
1
$begingroup$
You're missing some parentheses after "Let $T(h) = dots$"
$endgroup$
– 0x539
Jan 3 at 14:59
$begingroup$
You're missing some parentheses after "Let $T(h) = dots$"
$endgroup$
– 0x539
Jan 3 at 14:59
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I think your derivative $T$ is correct. In my experience big-$O$ notation is useful for obtaining the solution for this kind of problems, but for actual proofs it is often easier to write down explicit inequalities. So let's start doing exactly that.
$renewcommand{epsilon}{varepsilon}$
By the error theorem for Taylor expansion $cos(A + x) = cos A - x sin A - frac12x^2 cos alpha$ for some $alpha in (A, A+x)$. Since bounding $cos$ by $1$ we get
$$
|cos(A + x) - (cos A - x sin A)| leq frac12 x^2
$$
Now let $f, h in mathcal{C}[0, 1]$ such that $|h|_infty < epsilon$ for some $epsilon > 0$. Then
$$
begin{align}
|F(f + h)(x) - F(f)(x) - T(x) | \
&hspace{-45mm}= left|int_0^x cosleft((f(t)^2 + h(t)^2)right) - cosleft(f(t)^2right) +2 f(t) h(t) sinleft(f(t)^2right) ,dt right|\
&hspace{-45mm}= left|int_0^x cosleft((f(t)^2 + h(t)^2)right) - cosleft(f(t)^2right) + left( 2 f(t) h(t) + h(t)^2 right) sinleft(f(t)^2right) \
- h(t)^2 sinleft(f(t)^2right),dtright| \
&hspace{-45mm}leq int_0^x frac12left| 2 f(t) h(t) + h(t)^2 right|^2 + left| h(t)^2 sinleft(f(t)^2right) right| ,dt \
&hspace{-45mm}leq frac12 left( 2 |f|_infty epsilon + epsilon^2 right)^2 + epsilon^2
end{align}
$$
This last bound is obviously $O(epsilon^2)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2975828%2fcomputing-fr%25c3%25a9chet-derivative-of-ffx-intx-0-cosft2dt-x-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think your derivative $T$ is correct. In my experience big-$O$ notation is useful for obtaining the solution for this kind of problems, but for actual proofs it is often easier to write down explicit inequalities. So let's start doing exactly that.
$renewcommand{epsilon}{varepsilon}$
By the error theorem for Taylor expansion $cos(A + x) = cos A - x sin A - frac12x^2 cos alpha$ for some $alpha in (A, A+x)$. Since bounding $cos$ by $1$ we get
$$
|cos(A + x) - (cos A - x sin A)| leq frac12 x^2
$$
Now let $f, h in mathcal{C}[0, 1]$ such that $|h|_infty < epsilon$ for some $epsilon > 0$. Then
$$
begin{align}
|F(f + h)(x) - F(f)(x) - T(x) | \
&hspace{-45mm}= left|int_0^x cosleft((f(t)^2 + h(t)^2)right) - cosleft(f(t)^2right) +2 f(t) h(t) sinleft(f(t)^2right) ,dt right|\
&hspace{-45mm}= left|int_0^x cosleft((f(t)^2 + h(t)^2)right) - cosleft(f(t)^2right) + left( 2 f(t) h(t) + h(t)^2 right) sinleft(f(t)^2right) \
- h(t)^2 sinleft(f(t)^2right),dtright| \
&hspace{-45mm}leq int_0^x frac12left| 2 f(t) h(t) + h(t)^2 right|^2 + left| h(t)^2 sinleft(f(t)^2right) right| ,dt \
&hspace{-45mm}leq frac12 left( 2 |f|_infty epsilon + epsilon^2 right)^2 + epsilon^2
end{align}
$$
This last bound is obviously $O(epsilon^2)$.
$endgroup$
add a comment |
$begingroup$
I think your derivative $T$ is correct. In my experience big-$O$ notation is useful for obtaining the solution for this kind of problems, but for actual proofs it is often easier to write down explicit inequalities. So let's start doing exactly that.
$renewcommand{epsilon}{varepsilon}$
By the error theorem for Taylor expansion $cos(A + x) = cos A - x sin A - frac12x^2 cos alpha$ for some $alpha in (A, A+x)$. Since bounding $cos$ by $1$ we get
$$
|cos(A + x) - (cos A - x sin A)| leq frac12 x^2
$$
Now let $f, h in mathcal{C}[0, 1]$ such that $|h|_infty < epsilon$ for some $epsilon > 0$. Then
$$
begin{align}
|F(f + h)(x) - F(f)(x) - T(x) | \
&hspace{-45mm}= left|int_0^x cosleft((f(t)^2 + h(t)^2)right) - cosleft(f(t)^2right) +2 f(t) h(t) sinleft(f(t)^2right) ,dt right|\
&hspace{-45mm}= left|int_0^x cosleft((f(t)^2 + h(t)^2)right) - cosleft(f(t)^2right) + left( 2 f(t) h(t) + h(t)^2 right) sinleft(f(t)^2right) \
- h(t)^2 sinleft(f(t)^2right),dtright| \
&hspace{-45mm}leq int_0^x frac12left| 2 f(t) h(t) + h(t)^2 right|^2 + left| h(t)^2 sinleft(f(t)^2right) right| ,dt \
&hspace{-45mm}leq frac12 left( 2 |f|_infty epsilon + epsilon^2 right)^2 + epsilon^2
end{align}
$$
This last bound is obviously $O(epsilon^2)$.
$endgroup$
add a comment |
$begingroup$
I think your derivative $T$ is correct. In my experience big-$O$ notation is useful for obtaining the solution for this kind of problems, but for actual proofs it is often easier to write down explicit inequalities. So let's start doing exactly that.
$renewcommand{epsilon}{varepsilon}$
By the error theorem for Taylor expansion $cos(A + x) = cos A - x sin A - frac12x^2 cos alpha$ for some $alpha in (A, A+x)$. Since bounding $cos$ by $1$ we get
$$
|cos(A + x) - (cos A - x sin A)| leq frac12 x^2
$$
Now let $f, h in mathcal{C}[0, 1]$ such that $|h|_infty < epsilon$ for some $epsilon > 0$. Then
$$
begin{align}
|F(f + h)(x) - F(f)(x) - T(x) | \
&hspace{-45mm}= left|int_0^x cosleft((f(t)^2 + h(t)^2)right) - cosleft(f(t)^2right) +2 f(t) h(t) sinleft(f(t)^2right) ,dt right|\
&hspace{-45mm}= left|int_0^x cosleft((f(t)^2 + h(t)^2)right) - cosleft(f(t)^2right) + left( 2 f(t) h(t) + h(t)^2 right) sinleft(f(t)^2right) \
- h(t)^2 sinleft(f(t)^2right),dtright| \
&hspace{-45mm}leq int_0^x frac12left| 2 f(t) h(t) + h(t)^2 right|^2 + left| h(t)^2 sinleft(f(t)^2right) right| ,dt \
&hspace{-45mm}leq frac12 left( 2 |f|_infty epsilon + epsilon^2 right)^2 + epsilon^2
end{align}
$$
This last bound is obviously $O(epsilon^2)$.
$endgroup$
I think your derivative $T$ is correct. In my experience big-$O$ notation is useful for obtaining the solution for this kind of problems, but for actual proofs it is often easier to write down explicit inequalities. So let's start doing exactly that.
$renewcommand{epsilon}{varepsilon}$
By the error theorem for Taylor expansion $cos(A + x) = cos A - x sin A - frac12x^2 cos alpha$ for some $alpha in (A, A+x)$. Since bounding $cos$ by $1$ we get
$$
|cos(A + x) - (cos A - x sin A)| leq frac12 x^2
$$
Now let $f, h in mathcal{C}[0, 1]$ such that $|h|_infty < epsilon$ for some $epsilon > 0$. Then
$$
begin{align}
|F(f + h)(x) - F(f)(x) - T(x) | \
&hspace{-45mm}= left|int_0^x cosleft((f(t)^2 + h(t)^2)right) - cosleft(f(t)^2right) +2 f(t) h(t) sinleft(f(t)^2right) ,dt right|\
&hspace{-45mm}= left|int_0^x cosleft((f(t)^2 + h(t)^2)right) - cosleft(f(t)^2right) + left( 2 f(t) h(t) + h(t)^2 right) sinleft(f(t)^2right) \
- h(t)^2 sinleft(f(t)^2right),dtright| \
&hspace{-45mm}leq int_0^x frac12left| 2 f(t) h(t) + h(t)^2 right|^2 + left| h(t)^2 sinleft(f(t)^2right) right| ,dt \
&hspace{-45mm}leq frac12 left( 2 |f|_infty epsilon + epsilon^2 right)^2 + epsilon^2
end{align}
$$
This last bound is obviously $O(epsilon^2)$.
edited Jan 3 at 15:43
answered Jan 3 at 15:30
0x5390x539
1,356418
1,356418
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2975828%2fcomputing-fr%25c3%25a9chet-derivative-of-ffx-intx-0-cosft2dt-x-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
You're missing some parentheses after "Let $T(h) = dots$"
$endgroup$
– 0x539
Jan 3 at 14:59