Eigen values of a Third Order Linear Homogenous ODE
$begingroup$
I have two third order linear ODE which have been arrived after applying separation of variables to a system of PDEs
begin{eqnarray}
lambda_h F''' - 2 lambda_h beta_h F'' + left( (lambda_h beta_h - 1) beta_h - mu right) F' + beta_h^2 F &=& 0,\
V lambda_c G''' - 2 V lambda_c beta_c G'' + left( (lambda_c beta_c - 1) V beta_c + mu right) G' + V beta_c^2 G &=& 0,
end{eqnarray}
$F$ is $F(x)$ and $G$ is $G(y)$. The boundary conditions are
For $F$:
$$F(0)=0$$
$$frac{F''(0)}{F'(0)}=beta_h$$
$$frac{F''(1)}{F'(1)}=beta_h$$
For $G$:
$$G(0)=0$$
$$frac{G''(0)}{G'(0)}=beta_c$$
$$frac{G''(1)}{G'(1)}=beta_c$$
$lambda_h$, $lambda_c$, $beta_h$ and $beta_c$ are all constants $>0$.
$mu$ is the separation constant .
I need to determine eigenvalues for each BVP involving $F$ and $G$. So for finding out eigenvalues i know i need to consider all the three cases
$mu>0$, $mu<0$ and $mu=0$ and then look for non-trivial solutions by applying the specific set of b.c. Although i am acquainted with the procedure to determine eigenvalues for a second order DE, the third order of the DE(s)is something i am not familiar with.
Any recommendations on how should i go about tackling this ?
Attempt
As per @Cesareo recommendations, I arrive at the following
linear equations
$$C_1+C_2+C_3=0$$
$$frac{F''(0)}{F'(0)}=frac{{C_1}{delta_1(mu)}^2+{C_2}{delta_2(mu)}^2+{C_3}{delta_3(mu)}^2}{-{C_1}{delta_1(mu)}-{C_2}{delta_2(mu)}-{C_3}{delta_3(mu)}}=beta_h$$
$$frac{F''(1)}{F'(1)}=frac{{C_1e^{-delta_1(mu)}}{delta_1(mu)}^2+{C_2e^{-delta_2(mu)}}{delta_2(mu)}^2+{C_3e^{-delta_3(mu)}}{delta_3(mu)}^2}{-{C_1e^{-delta_1(mu)}}{delta_1(mu)}-{C_2e^{-delta_2(mu)}}{delta_2(mu)}-{C_3e^{-delta_3(mu)}}{delta_3(mu)}}=beta_h$$
I reach the following form of $M(mu).C=0$
begin{vmatrix}
1 & 1 & 1 \
{delta_1(mu)}^2+beta_hdelta_1(mu) & {delta_2(mu)}^2+beta_hdelta_2(mu) & {delta_3(mu)}^2+beta_hdelta_3(mu) \
e^{-delta_1(mu)}({delta_1(mu)}^2+beta_hdelta_1(mu)) & e^{-delta_2(mu)}({delta_2(mu)}^2+beta_hdelta_2(mu)) & e^{-delta_3(mu)}({delta_3(mu)}^2+beta_hdelta_3(mu)) \
end{vmatrix}$=0$
Solving this determinant is supposed to give me the eigen values $mu_n$ and consequently the eigen functions. The determinant can be reduced to two $0$ in the first row by coloumn manipulation, but I do not find any way to handle the consequent equation that comes out of it which is something like this:
$$[(delta_1(mu)-delta_2(mu))(delta_1(mu)+delta_2(mu)+beta_h)[(e^{-delta_2(mu)}{delta_2(mu)}^2-e^{-delta_3(mu)}{delta_3(mu)}^2)+beta_h(e^{-delta_2(mu)}{delta_2(mu)}-e^{-delta_3(mu)}{delta_3(mu)})]]-[(delta_2(mu)-delta_3(mu))(delta_2(mu)+delta_3(mu)+beta_h)[(e^{-delta_1(mu)}{delta_1(mu)}^2-e^{-delta_2(mu)}{delta_2(mu)}^2)+beta_h(e^{-delta_1(mu)}{delta_1(mu)}-e^{-delta_2(mu)}{delta_2(mu)})]]=0$$
After this step i fail to proceed further to find the eigenvalues using this $mathbb{det}M=0$ equation
ordinary-differential-equations pde eigenvalues-eigenvectors eigenfunctions
$endgroup$
add a comment |
$begingroup$
I have two third order linear ODE which have been arrived after applying separation of variables to a system of PDEs
begin{eqnarray}
lambda_h F''' - 2 lambda_h beta_h F'' + left( (lambda_h beta_h - 1) beta_h - mu right) F' + beta_h^2 F &=& 0,\
V lambda_c G''' - 2 V lambda_c beta_c G'' + left( (lambda_c beta_c - 1) V beta_c + mu right) G' + V beta_c^2 G &=& 0,
end{eqnarray}
$F$ is $F(x)$ and $G$ is $G(y)$. The boundary conditions are
For $F$:
$$F(0)=0$$
$$frac{F''(0)}{F'(0)}=beta_h$$
$$frac{F''(1)}{F'(1)}=beta_h$$
For $G$:
$$G(0)=0$$
$$frac{G''(0)}{G'(0)}=beta_c$$
$$frac{G''(1)}{G'(1)}=beta_c$$
$lambda_h$, $lambda_c$, $beta_h$ and $beta_c$ are all constants $>0$.
$mu$ is the separation constant .
I need to determine eigenvalues for each BVP involving $F$ and $G$. So for finding out eigenvalues i know i need to consider all the three cases
$mu>0$, $mu<0$ and $mu=0$ and then look for non-trivial solutions by applying the specific set of b.c. Although i am acquainted with the procedure to determine eigenvalues for a second order DE, the third order of the DE(s)is something i am not familiar with.
Any recommendations on how should i go about tackling this ?
Attempt
As per @Cesareo recommendations, I arrive at the following
linear equations
$$C_1+C_2+C_3=0$$
$$frac{F''(0)}{F'(0)}=frac{{C_1}{delta_1(mu)}^2+{C_2}{delta_2(mu)}^2+{C_3}{delta_3(mu)}^2}{-{C_1}{delta_1(mu)}-{C_2}{delta_2(mu)}-{C_3}{delta_3(mu)}}=beta_h$$
$$frac{F''(1)}{F'(1)}=frac{{C_1e^{-delta_1(mu)}}{delta_1(mu)}^2+{C_2e^{-delta_2(mu)}}{delta_2(mu)}^2+{C_3e^{-delta_3(mu)}}{delta_3(mu)}^2}{-{C_1e^{-delta_1(mu)}}{delta_1(mu)}-{C_2e^{-delta_2(mu)}}{delta_2(mu)}-{C_3e^{-delta_3(mu)}}{delta_3(mu)}}=beta_h$$
I reach the following form of $M(mu).C=0$
begin{vmatrix}
1 & 1 & 1 \
{delta_1(mu)}^2+beta_hdelta_1(mu) & {delta_2(mu)}^2+beta_hdelta_2(mu) & {delta_3(mu)}^2+beta_hdelta_3(mu) \
e^{-delta_1(mu)}({delta_1(mu)}^2+beta_hdelta_1(mu)) & e^{-delta_2(mu)}({delta_2(mu)}^2+beta_hdelta_2(mu)) & e^{-delta_3(mu)}({delta_3(mu)}^2+beta_hdelta_3(mu)) \
end{vmatrix}$=0$
Solving this determinant is supposed to give me the eigen values $mu_n$ and consequently the eigen functions. The determinant can be reduced to two $0$ in the first row by coloumn manipulation, but I do not find any way to handle the consequent equation that comes out of it which is something like this:
$$[(delta_1(mu)-delta_2(mu))(delta_1(mu)+delta_2(mu)+beta_h)[(e^{-delta_2(mu)}{delta_2(mu)}^2-e^{-delta_3(mu)}{delta_3(mu)}^2)+beta_h(e^{-delta_2(mu)}{delta_2(mu)}-e^{-delta_3(mu)}{delta_3(mu)})]]-[(delta_2(mu)-delta_3(mu))(delta_2(mu)+delta_3(mu)+beta_h)[(e^{-delta_1(mu)}{delta_1(mu)}^2-e^{-delta_2(mu)}{delta_2(mu)}^2)+beta_h(e^{-delta_1(mu)}{delta_1(mu)}-e^{-delta_2(mu)}{delta_2(mu)})]]=0$$
After this step i fail to proceed further to find the eigenvalues using this $mathbb{det}M=0$ equation
ordinary-differential-equations pde eigenvalues-eigenvectors eigenfunctions
$endgroup$
add a comment |
$begingroup$
I have two third order linear ODE which have been arrived after applying separation of variables to a system of PDEs
begin{eqnarray}
lambda_h F''' - 2 lambda_h beta_h F'' + left( (lambda_h beta_h - 1) beta_h - mu right) F' + beta_h^2 F &=& 0,\
V lambda_c G''' - 2 V lambda_c beta_c G'' + left( (lambda_c beta_c - 1) V beta_c + mu right) G' + V beta_c^2 G &=& 0,
end{eqnarray}
$F$ is $F(x)$ and $G$ is $G(y)$. The boundary conditions are
For $F$:
$$F(0)=0$$
$$frac{F''(0)}{F'(0)}=beta_h$$
$$frac{F''(1)}{F'(1)}=beta_h$$
For $G$:
$$G(0)=0$$
$$frac{G''(0)}{G'(0)}=beta_c$$
$$frac{G''(1)}{G'(1)}=beta_c$$
$lambda_h$, $lambda_c$, $beta_h$ and $beta_c$ are all constants $>0$.
$mu$ is the separation constant .
I need to determine eigenvalues for each BVP involving $F$ and $G$. So for finding out eigenvalues i know i need to consider all the three cases
$mu>0$, $mu<0$ and $mu=0$ and then look for non-trivial solutions by applying the specific set of b.c. Although i am acquainted with the procedure to determine eigenvalues for a second order DE, the third order of the DE(s)is something i am not familiar with.
Any recommendations on how should i go about tackling this ?
Attempt
As per @Cesareo recommendations, I arrive at the following
linear equations
$$C_1+C_2+C_3=0$$
$$frac{F''(0)}{F'(0)}=frac{{C_1}{delta_1(mu)}^2+{C_2}{delta_2(mu)}^2+{C_3}{delta_3(mu)}^2}{-{C_1}{delta_1(mu)}-{C_2}{delta_2(mu)}-{C_3}{delta_3(mu)}}=beta_h$$
$$frac{F''(1)}{F'(1)}=frac{{C_1e^{-delta_1(mu)}}{delta_1(mu)}^2+{C_2e^{-delta_2(mu)}}{delta_2(mu)}^2+{C_3e^{-delta_3(mu)}}{delta_3(mu)}^2}{-{C_1e^{-delta_1(mu)}}{delta_1(mu)}-{C_2e^{-delta_2(mu)}}{delta_2(mu)}-{C_3e^{-delta_3(mu)}}{delta_3(mu)}}=beta_h$$
I reach the following form of $M(mu).C=0$
begin{vmatrix}
1 & 1 & 1 \
{delta_1(mu)}^2+beta_hdelta_1(mu) & {delta_2(mu)}^2+beta_hdelta_2(mu) & {delta_3(mu)}^2+beta_hdelta_3(mu) \
e^{-delta_1(mu)}({delta_1(mu)}^2+beta_hdelta_1(mu)) & e^{-delta_2(mu)}({delta_2(mu)}^2+beta_hdelta_2(mu)) & e^{-delta_3(mu)}({delta_3(mu)}^2+beta_hdelta_3(mu)) \
end{vmatrix}$=0$
Solving this determinant is supposed to give me the eigen values $mu_n$ and consequently the eigen functions. The determinant can be reduced to two $0$ in the first row by coloumn manipulation, but I do not find any way to handle the consequent equation that comes out of it which is something like this:
$$[(delta_1(mu)-delta_2(mu))(delta_1(mu)+delta_2(mu)+beta_h)[(e^{-delta_2(mu)}{delta_2(mu)}^2-e^{-delta_3(mu)}{delta_3(mu)}^2)+beta_h(e^{-delta_2(mu)}{delta_2(mu)}-e^{-delta_3(mu)}{delta_3(mu)})]]-[(delta_2(mu)-delta_3(mu))(delta_2(mu)+delta_3(mu)+beta_h)[(e^{-delta_1(mu)}{delta_1(mu)}^2-e^{-delta_2(mu)}{delta_2(mu)}^2)+beta_h(e^{-delta_1(mu)}{delta_1(mu)}-e^{-delta_2(mu)}{delta_2(mu)})]]=0$$
After this step i fail to proceed further to find the eigenvalues using this $mathbb{det}M=0$ equation
ordinary-differential-equations pde eigenvalues-eigenvectors eigenfunctions
$endgroup$
I have two third order linear ODE which have been arrived after applying separation of variables to a system of PDEs
begin{eqnarray}
lambda_h F''' - 2 lambda_h beta_h F'' + left( (lambda_h beta_h - 1) beta_h - mu right) F' + beta_h^2 F &=& 0,\
V lambda_c G''' - 2 V lambda_c beta_c G'' + left( (lambda_c beta_c - 1) V beta_c + mu right) G' + V beta_c^2 G &=& 0,
end{eqnarray}
$F$ is $F(x)$ and $G$ is $G(y)$. The boundary conditions are
For $F$:
$$F(0)=0$$
$$frac{F''(0)}{F'(0)}=beta_h$$
$$frac{F''(1)}{F'(1)}=beta_h$$
For $G$:
$$G(0)=0$$
$$frac{G''(0)}{G'(0)}=beta_c$$
$$frac{G''(1)}{G'(1)}=beta_c$$
$lambda_h$, $lambda_c$, $beta_h$ and $beta_c$ are all constants $>0$.
$mu$ is the separation constant .
I need to determine eigenvalues for each BVP involving $F$ and $G$. So for finding out eigenvalues i know i need to consider all the three cases
$mu>0$, $mu<0$ and $mu=0$ and then look for non-trivial solutions by applying the specific set of b.c. Although i am acquainted with the procedure to determine eigenvalues for a second order DE, the third order of the DE(s)is something i am not familiar with.
Any recommendations on how should i go about tackling this ?
Attempt
As per @Cesareo recommendations, I arrive at the following
linear equations
$$C_1+C_2+C_3=0$$
$$frac{F''(0)}{F'(0)}=frac{{C_1}{delta_1(mu)}^2+{C_2}{delta_2(mu)}^2+{C_3}{delta_3(mu)}^2}{-{C_1}{delta_1(mu)}-{C_2}{delta_2(mu)}-{C_3}{delta_3(mu)}}=beta_h$$
$$frac{F''(1)}{F'(1)}=frac{{C_1e^{-delta_1(mu)}}{delta_1(mu)}^2+{C_2e^{-delta_2(mu)}}{delta_2(mu)}^2+{C_3e^{-delta_3(mu)}}{delta_3(mu)}^2}{-{C_1e^{-delta_1(mu)}}{delta_1(mu)}-{C_2e^{-delta_2(mu)}}{delta_2(mu)}-{C_3e^{-delta_3(mu)}}{delta_3(mu)}}=beta_h$$
I reach the following form of $M(mu).C=0$
begin{vmatrix}
1 & 1 & 1 \
{delta_1(mu)}^2+beta_hdelta_1(mu) & {delta_2(mu)}^2+beta_hdelta_2(mu) & {delta_3(mu)}^2+beta_hdelta_3(mu) \
e^{-delta_1(mu)}({delta_1(mu)}^2+beta_hdelta_1(mu)) & e^{-delta_2(mu)}({delta_2(mu)}^2+beta_hdelta_2(mu)) & e^{-delta_3(mu)}({delta_3(mu)}^2+beta_hdelta_3(mu)) \
end{vmatrix}$=0$
Solving this determinant is supposed to give me the eigen values $mu_n$ and consequently the eigen functions. The determinant can be reduced to two $0$ in the first row by coloumn manipulation, but I do not find any way to handle the consequent equation that comes out of it which is something like this:
$$[(delta_1(mu)-delta_2(mu))(delta_1(mu)+delta_2(mu)+beta_h)[(e^{-delta_2(mu)}{delta_2(mu)}^2-e^{-delta_3(mu)}{delta_3(mu)}^2)+beta_h(e^{-delta_2(mu)}{delta_2(mu)}-e^{-delta_3(mu)}{delta_3(mu)})]]-[(delta_2(mu)-delta_3(mu))(delta_2(mu)+delta_3(mu)+beta_h)[(e^{-delta_1(mu)}{delta_1(mu)}^2-e^{-delta_2(mu)}{delta_2(mu)}^2)+beta_h(e^{-delta_1(mu)}{delta_1(mu)}-e^{-delta_2(mu)}{delta_2(mu)})]]=0$$
After this step i fail to proceed further to find the eigenvalues using this $mathbb{det}M=0$ equation
ordinary-differential-equations pde eigenvalues-eigenvectors eigenfunctions
ordinary-differential-equations pde eigenvalues-eigenvectors eigenfunctions
edited Feb 26 at 10:21
Indrasis Mitra
asked Jan 11 at 12:06
Indrasis MitraIndrasis Mitra
80111
80111
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Regarding the first DE the linear differential operator
$$
lambda_h delta^3 - 2 lambda_h beta_h delta^2 + left( (lambda_h beta_h - 1) beta_h - mu right) delta + beta_h^2=0
$$
and the three roots $delta_i(mu), i = 1,2,3$ we have that
$$
F(t) = sum_k C_k e^{-delta_k(mu)t}
$$
using now the boundary conditions
$$
F(0) = sum_k C_k = 0 longrightarrow (1)
$$
and with
$$
F'(0) = -sum_k C_k delta_k(mu)\
F''(0) = sum_k C_k delta_k(mu)^2\
$$
giving
$$
-frac{sum_k C_k delta_k(mu)^2}{sum_k C_k delta_k(mu)}=beta_hlongrightarrow (2)
$$
and similarly
$$
-frac{sum_k C_k delta_k(mu)^2e^{-delta_k(mu)}}{sum_k C_k delta_k(mu)e^{-delta_k(mu)}}=beta_hlongrightarrow (3)
$$
then we have three linear equations $(1,2,3)$ in $C_k$ that can be arranged as
$$
M(mu)cdot C = 0, C = (C_k)
$$
This system have nontrivial solution for $det(M(mu)) = 0$ hence the roots for this determinant equation are the eigenvalues $mu_n$ and the eigenfunctions are $e^{-delta_k(mu_n)t}$
The procedure for $G$ is quite similar.
NOTE
Assuming numerical values $lambda_h = 1,beta_h = -10$ we have the operator polynomial
$$
s^3+20s^2+(110-mu)s+100 = 0
$$
with roots $delta_1(mu),delta_2(mu),delta_3(mu)$
The determinant after simplifications reads
$$
det(M) = left(e^{delta _1+delta _2} left(delta _1-delta _2right) delta _3 left(beta
_h+delta _1+delta _2right) left(beta _h+delta _3right)-e^{delta _1+delta _3}
delta _2 left(delta _1-delta _3right) left(beta _h+delta _2right) left(beta
_h+delta _1+delta _3right)+e^{delta _2+delta _3} delta _1 left(delta _2-delta
_3right) left(beta _h+delta _1right) left(beta _h+delta _2+delta
_3right)right) left(cosh left(delta _1+delta _2+delta _3right)-sinh
left(delta _1+delta _2+delta _3right)right)
$$
discarding $cosh (delta_1+delta_2+delta_3)-sinh
(delta_1+delta_2+delta_3)=0$ we follow with
$$
Delta(mu)=e^{delta _1+delta _2} left(delta _1-delta _2right) delta _3 left(beta _h+delta
_1+delta _2right) left(beta _h+delta _3right)-e^{delta _1+delta _3} delta _2
left(delta _1-delta _3right) left(beta _h+delta _2right) left(beta _h+delta
_1+delta _3right)+e^{delta _2+delta _3} delta _1 left(delta _2-delta _3right)
left(beta _h+delta _1right) left(beta _h+delta _2+delta _3right)=0
$$
and then after plotting we have
In red Re[$Delta(mu)$] and in blue Im[$Delta(mu)$]. The zeroes are the eigenvalues $mu_n$
Attached a very basic MATHEMATICA script in order to obtain the first $mu_k$ for $lambda_h = frac 14, beta_h = -10$
parms = {lh -> 1/4, bh -> -10};
F[t_, n_] := Sum[
!(*SubscriptBox[(c), ({1, j})]) Exp[exps[[j]][[1]] t] +
!(*SubscriptBox[(c), ({2, j})]) Exp[exps[[j]][[2]] t] +
!(*SubscriptBox[(c), ({3, j})]) Exp[exps[[j]][[3]] t], {j, 1,n}]
sols = Solve[
lh s^3 - 2 lh bh s^2 + ((lh bh - 1) bh - mu) s + bh^2 == 0, s] /.
parms // FullSimplify
roots = s /. sols;
M = {{1, 1, 1}, {r1^2 + bh r1, r2^2 + bh r2, r3^2 + bh r3},
{E^(-r1) (r1^2 + bh r1), E^(-r2) (r2^2 + bh r2), E^(-r3) (r3^2 + bh r3)}};
det = -Det[M] // FullSimplify
subdet1 = (Cosh[r1 + r2 + r3] - Sinh[r1 + r2 + r3])
subdet2 = det/subdet1 // FullSimplify
subdet20 = subdet2 /. Thread[{r1, r2, r3} -> roots] /. parms;
Plot[Im[subdet20], {mu, -100, 0}, PlotStyle -> {Thick, Black},
PlotRange -> {-10, 10}]
solmu1 = FindRoot[Im[subdet20] == 0, {mu, 0}]
solmu2 = FindRoot[Im[subdet20] == 0, {mu, -7}]
solmu3 = FindRoot[Im[subdet20] == 0, {mu, -20}]
solmu4 = FindRoot[Im[subdet20] == 0, {mu, -40}]
solmu5 = FindRoot[Im[subdet20] == 0, {mu, -60}]
solmu6 = FindRoot[Im[subdet20] == 0, {mu, -80}]
solmu7 = FindRoot[Im[subdet20] == 0, {mu, -110}]
solmu8 = FindRoot[Im[subdet20] == 0, {mu, -150}]
solmu9 = FindRoot[Im[subdet20] == 0, {mu, -190}]
Subscript[mu, 1] = mu /. solmu1;
Subscript[mu, 2] = mu /. solmu2;
Subscript[mu, 3] = mu /. solmu3;
Subscript[mu, 4] = mu /. solmu4;
Subscript[mu, 5] = mu /. solmu5;
Subscript[mu, 6] = mu /. solmu6;
Subscript[mu, 7] = mu /. solmu7;
Subscript[mu, 8] = mu /. solmu8;
Subscript[mu, 9] = mu /. solmu9;
exps = Table[roots /. parms /. {mu -> Subscript[mu, k]}, {k, 1, 9}]
F[t, 9]
$endgroup$
$begingroup$
Thanks for the explanation. I guess you used $F'/F''$ while writing $(2)$ and $(3)$ while the BC are actually $F''/F'$
$endgroup$
– Indrasis Mitra
Jan 12 at 3:10
$begingroup$
Also will solving for $det(M(mu))=0$ take care of all the possible values of $mu$ that needs to be considered i.e. $mu>0$,$mu=0$ and $mu<0$ ? for finding the eigenvalues ?
$endgroup$
– Indrasis Mitra
Jan 12 at 4:26
$begingroup$
my last comment is pretty ignorant. So actually $F(t)=C_1e^{-delta_1(mu)t}+C_2e^{-delta_2(mu)t}+C_3e^{-delta_3(mu)t}$, for the three roots of the characteristic equation. Am i right ?
$endgroup$
– Indrasis Mitra
Jan 12 at 6:40
$begingroup$
I followed the steps you suggested to atrrive at $mathbb{det}(M(mu))=0$. I find that it has $delta_1(mu)$,$delta_2(mu)$ and $delta_3(mu)$. I have edited the original question to reflect my attempt. I cannot figure out how to proceed further, am i doing something wrong ?
$endgroup$
– Indrasis Mitra
Jan 13 at 3:45
$begingroup$
@IndrasisMitra See attached note.
$endgroup$
– Cesareo
Jan 13 at 9:19
|
show 11 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069768%2feigen-values-of-a-third-order-linear-homogenous-ode%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Regarding the first DE the linear differential operator
$$
lambda_h delta^3 - 2 lambda_h beta_h delta^2 + left( (lambda_h beta_h - 1) beta_h - mu right) delta + beta_h^2=0
$$
and the three roots $delta_i(mu), i = 1,2,3$ we have that
$$
F(t) = sum_k C_k e^{-delta_k(mu)t}
$$
using now the boundary conditions
$$
F(0) = sum_k C_k = 0 longrightarrow (1)
$$
and with
$$
F'(0) = -sum_k C_k delta_k(mu)\
F''(0) = sum_k C_k delta_k(mu)^2\
$$
giving
$$
-frac{sum_k C_k delta_k(mu)^2}{sum_k C_k delta_k(mu)}=beta_hlongrightarrow (2)
$$
and similarly
$$
-frac{sum_k C_k delta_k(mu)^2e^{-delta_k(mu)}}{sum_k C_k delta_k(mu)e^{-delta_k(mu)}}=beta_hlongrightarrow (3)
$$
then we have three linear equations $(1,2,3)$ in $C_k$ that can be arranged as
$$
M(mu)cdot C = 0, C = (C_k)
$$
This system have nontrivial solution for $det(M(mu)) = 0$ hence the roots for this determinant equation are the eigenvalues $mu_n$ and the eigenfunctions are $e^{-delta_k(mu_n)t}$
The procedure for $G$ is quite similar.
NOTE
Assuming numerical values $lambda_h = 1,beta_h = -10$ we have the operator polynomial
$$
s^3+20s^2+(110-mu)s+100 = 0
$$
with roots $delta_1(mu),delta_2(mu),delta_3(mu)$
The determinant after simplifications reads
$$
det(M) = left(e^{delta _1+delta _2} left(delta _1-delta _2right) delta _3 left(beta
_h+delta _1+delta _2right) left(beta _h+delta _3right)-e^{delta _1+delta _3}
delta _2 left(delta _1-delta _3right) left(beta _h+delta _2right) left(beta
_h+delta _1+delta _3right)+e^{delta _2+delta _3} delta _1 left(delta _2-delta
_3right) left(beta _h+delta _1right) left(beta _h+delta _2+delta
_3right)right) left(cosh left(delta _1+delta _2+delta _3right)-sinh
left(delta _1+delta _2+delta _3right)right)
$$
discarding $cosh (delta_1+delta_2+delta_3)-sinh
(delta_1+delta_2+delta_3)=0$ we follow with
$$
Delta(mu)=e^{delta _1+delta _2} left(delta _1-delta _2right) delta _3 left(beta _h+delta
_1+delta _2right) left(beta _h+delta _3right)-e^{delta _1+delta _3} delta _2
left(delta _1-delta _3right) left(beta _h+delta _2right) left(beta _h+delta
_1+delta _3right)+e^{delta _2+delta _3} delta _1 left(delta _2-delta _3right)
left(beta _h+delta _1right) left(beta _h+delta _2+delta _3right)=0
$$
and then after plotting we have
In red Re[$Delta(mu)$] and in blue Im[$Delta(mu)$]. The zeroes are the eigenvalues $mu_n$
Attached a very basic MATHEMATICA script in order to obtain the first $mu_k$ for $lambda_h = frac 14, beta_h = -10$
parms = {lh -> 1/4, bh -> -10};
F[t_, n_] := Sum[
!(*SubscriptBox[(c), ({1, j})]) Exp[exps[[j]][[1]] t] +
!(*SubscriptBox[(c), ({2, j})]) Exp[exps[[j]][[2]] t] +
!(*SubscriptBox[(c), ({3, j})]) Exp[exps[[j]][[3]] t], {j, 1,n}]
sols = Solve[
lh s^3 - 2 lh bh s^2 + ((lh bh - 1) bh - mu) s + bh^2 == 0, s] /.
parms // FullSimplify
roots = s /. sols;
M = {{1, 1, 1}, {r1^2 + bh r1, r2^2 + bh r2, r3^2 + bh r3},
{E^(-r1) (r1^2 + bh r1), E^(-r2) (r2^2 + bh r2), E^(-r3) (r3^2 + bh r3)}};
det = -Det[M] // FullSimplify
subdet1 = (Cosh[r1 + r2 + r3] - Sinh[r1 + r2 + r3])
subdet2 = det/subdet1 // FullSimplify
subdet20 = subdet2 /. Thread[{r1, r2, r3} -> roots] /. parms;
Plot[Im[subdet20], {mu, -100, 0}, PlotStyle -> {Thick, Black},
PlotRange -> {-10, 10}]
solmu1 = FindRoot[Im[subdet20] == 0, {mu, 0}]
solmu2 = FindRoot[Im[subdet20] == 0, {mu, -7}]
solmu3 = FindRoot[Im[subdet20] == 0, {mu, -20}]
solmu4 = FindRoot[Im[subdet20] == 0, {mu, -40}]
solmu5 = FindRoot[Im[subdet20] == 0, {mu, -60}]
solmu6 = FindRoot[Im[subdet20] == 0, {mu, -80}]
solmu7 = FindRoot[Im[subdet20] == 0, {mu, -110}]
solmu8 = FindRoot[Im[subdet20] == 0, {mu, -150}]
solmu9 = FindRoot[Im[subdet20] == 0, {mu, -190}]
Subscript[mu, 1] = mu /. solmu1;
Subscript[mu, 2] = mu /. solmu2;
Subscript[mu, 3] = mu /. solmu3;
Subscript[mu, 4] = mu /. solmu4;
Subscript[mu, 5] = mu /. solmu5;
Subscript[mu, 6] = mu /. solmu6;
Subscript[mu, 7] = mu /. solmu7;
Subscript[mu, 8] = mu /. solmu8;
Subscript[mu, 9] = mu /. solmu9;
exps = Table[roots /. parms /. {mu -> Subscript[mu, k]}, {k, 1, 9}]
F[t, 9]
$endgroup$
$begingroup$
Thanks for the explanation. I guess you used $F'/F''$ while writing $(2)$ and $(3)$ while the BC are actually $F''/F'$
$endgroup$
– Indrasis Mitra
Jan 12 at 3:10
$begingroup$
Also will solving for $det(M(mu))=0$ take care of all the possible values of $mu$ that needs to be considered i.e. $mu>0$,$mu=0$ and $mu<0$ ? for finding the eigenvalues ?
$endgroup$
– Indrasis Mitra
Jan 12 at 4:26
$begingroup$
my last comment is pretty ignorant. So actually $F(t)=C_1e^{-delta_1(mu)t}+C_2e^{-delta_2(mu)t}+C_3e^{-delta_3(mu)t}$, for the three roots of the characteristic equation. Am i right ?
$endgroup$
– Indrasis Mitra
Jan 12 at 6:40
$begingroup$
I followed the steps you suggested to atrrive at $mathbb{det}(M(mu))=0$. I find that it has $delta_1(mu)$,$delta_2(mu)$ and $delta_3(mu)$. I have edited the original question to reflect my attempt. I cannot figure out how to proceed further, am i doing something wrong ?
$endgroup$
– Indrasis Mitra
Jan 13 at 3:45
$begingroup$
@IndrasisMitra See attached note.
$endgroup$
– Cesareo
Jan 13 at 9:19
|
show 11 more comments
$begingroup$
Regarding the first DE the linear differential operator
$$
lambda_h delta^3 - 2 lambda_h beta_h delta^2 + left( (lambda_h beta_h - 1) beta_h - mu right) delta + beta_h^2=0
$$
and the three roots $delta_i(mu), i = 1,2,3$ we have that
$$
F(t) = sum_k C_k e^{-delta_k(mu)t}
$$
using now the boundary conditions
$$
F(0) = sum_k C_k = 0 longrightarrow (1)
$$
and with
$$
F'(0) = -sum_k C_k delta_k(mu)\
F''(0) = sum_k C_k delta_k(mu)^2\
$$
giving
$$
-frac{sum_k C_k delta_k(mu)^2}{sum_k C_k delta_k(mu)}=beta_hlongrightarrow (2)
$$
and similarly
$$
-frac{sum_k C_k delta_k(mu)^2e^{-delta_k(mu)}}{sum_k C_k delta_k(mu)e^{-delta_k(mu)}}=beta_hlongrightarrow (3)
$$
then we have three linear equations $(1,2,3)$ in $C_k$ that can be arranged as
$$
M(mu)cdot C = 0, C = (C_k)
$$
This system have nontrivial solution for $det(M(mu)) = 0$ hence the roots for this determinant equation are the eigenvalues $mu_n$ and the eigenfunctions are $e^{-delta_k(mu_n)t}$
The procedure for $G$ is quite similar.
NOTE
Assuming numerical values $lambda_h = 1,beta_h = -10$ we have the operator polynomial
$$
s^3+20s^2+(110-mu)s+100 = 0
$$
with roots $delta_1(mu),delta_2(mu),delta_3(mu)$
The determinant after simplifications reads
$$
det(M) = left(e^{delta _1+delta _2} left(delta _1-delta _2right) delta _3 left(beta
_h+delta _1+delta _2right) left(beta _h+delta _3right)-e^{delta _1+delta _3}
delta _2 left(delta _1-delta _3right) left(beta _h+delta _2right) left(beta
_h+delta _1+delta _3right)+e^{delta _2+delta _3} delta _1 left(delta _2-delta
_3right) left(beta _h+delta _1right) left(beta _h+delta _2+delta
_3right)right) left(cosh left(delta _1+delta _2+delta _3right)-sinh
left(delta _1+delta _2+delta _3right)right)
$$
discarding $cosh (delta_1+delta_2+delta_3)-sinh
(delta_1+delta_2+delta_3)=0$ we follow with
$$
Delta(mu)=e^{delta _1+delta _2} left(delta _1-delta _2right) delta _3 left(beta _h+delta
_1+delta _2right) left(beta _h+delta _3right)-e^{delta _1+delta _3} delta _2
left(delta _1-delta _3right) left(beta _h+delta _2right) left(beta _h+delta
_1+delta _3right)+e^{delta _2+delta _3} delta _1 left(delta _2-delta _3right)
left(beta _h+delta _1right) left(beta _h+delta _2+delta _3right)=0
$$
and then after plotting we have
In red Re[$Delta(mu)$] and in blue Im[$Delta(mu)$]. The zeroes are the eigenvalues $mu_n$
Attached a very basic MATHEMATICA script in order to obtain the first $mu_k$ for $lambda_h = frac 14, beta_h = -10$
parms = {lh -> 1/4, bh -> -10};
F[t_, n_] := Sum[
!(*SubscriptBox[(c), ({1, j})]) Exp[exps[[j]][[1]] t] +
!(*SubscriptBox[(c), ({2, j})]) Exp[exps[[j]][[2]] t] +
!(*SubscriptBox[(c), ({3, j})]) Exp[exps[[j]][[3]] t], {j, 1,n}]
sols = Solve[
lh s^3 - 2 lh bh s^2 + ((lh bh - 1) bh - mu) s + bh^2 == 0, s] /.
parms // FullSimplify
roots = s /. sols;
M = {{1, 1, 1}, {r1^2 + bh r1, r2^2 + bh r2, r3^2 + bh r3},
{E^(-r1) (r1^2 + bh r1), E^(-r2) (r2^2 + bh r2), E^(-r3) (r3^2 + bh r3)}};
det = -Det[M] // FullSimplify
subdet1 = (Cosh[r1 + r2 + r3] - Sinh[r1 + r2 + r3])
subdet2 = det/subdet1 // FullSimplify
subdet20 = subdet2 /. Thread[{r1, r2, r3} -> roots] /. parms;
Plot[Im[subdet20], {mu, -100, 0}, PlotStyle -> {Thick, Black},
PlotRange -> {-10, 10}]
solmu1 = FindRoot[Im[subdet20] == 0, {mu, 0}]
solmu2 = FindRoot[Im[subdet20] == 0, {mu, -7}]
solmu3 = FindRoot[Im[subdet20] == 0, {mu, -20}]
solmu4 = FindRoot[Im[subdet20] == 0, {mu, -40}]
solmu5 = FindRoot[Im[subdet20] == 0, {mu, -60}]
solmu6 = FindRoot[Im[subdet20] == 0, {mu, -80}]
solmu7 = FindRoot[Im[subdet20] == 0, {mu, -110}]
solmu8 = FindRoot[Im[subdet20] == 0, {mu, -150}]
solmu9 = FindRoot[Im[subdet20] == 0, {mu, -190}]
Subscript[mu, 1] = mu /. solmu1;
Subscript[mu, 2] = mu /. solmu2;
Subscript[mu, 3] = mu /. solmu3;
Subscript[mu, 4] = mu /. solmu4;
Subscript[mu, 5] = mu /. solmu5;
Subscript[mu, 6] = mu /. solmu6;
Subscript[mu, 7] = mu /. solmu7;
Subscript[mu, 8] = mu /. solmu8;
Subscript[mu, 9] = mu /. solmu9;
exps = Table[roots /. parms /. {mu -> Subscript[mu, k]}, {k, 1, 9}]
F[t, 9]
$endgroup$
$begingroup$
Thanks for the explanation. I guess you used $F'/F''$ while writing $(2)$ and $(3)$ while the BC are actually $F''/F'$
$endgroup$
– Indrasis Mitra
Jan 12 at 3:10
$begingroup$
Also will solving for $det(M(mu))=0$ take care of all the possible values of $mu$ that needs to be considered i.e. $mu>0$,$mu=0$ and $mu<0$ ? for finding the eigenvalues ?
$endgroup$
– Indrasis Mitra
Jan 12 at 4:26
$begingroup$
my last comment is pretty ignorant. So actually $F(t)=C_1e^{-delta_1(mu)t}+C_2e^{-delta_2(mu)t}+C_3e^{-delta_3(mu)t}$, for the three roots of the characteristic equation. Am i right ?
$endgroup$
– Indrasis Mitra
Jan 12 at 6:40
$begingroup$
I followed the steps you suggested to atrrive at $mathbb{det}(M(mu))=0$. I find that it has $delta_1(mu)$,$delta_2(mu)$ and $delta_3(mu)$. I have edited the original question to reflect my attempt. I cannot figure out how to proceed further, am i doing something wrong ?
$endgroup$
– Indrasis Mitra
Jan 13 at 3:45
$begingroup$
@IndrasisMitra See attached note.
$endgroup$
– Cesareo
Jan 13 at 9:19
|
show 11 more comments
$begingroup$
Regarding the first DE the linear differential operator
$$
lambda_h delta^3 - 2 lambda_h beta_h delta^2 + left( (lambda_h beta_h - 1) beta_h - mu right) delta + beta_h^2=0
$$
and the three roots $delta_i(mu), i = 1,2,3$ we have that
$$
F(t) = sum_k C_k e^{-delta_k(mu)t}
$$
using now the boundary conditions
$$
F(0) = sum_k C_k = 0 longrightarrow (1)
$$
and with
$$
F'(0) = -sum_k C_k delta_k(mu)\
F''(0) = sum_k C_k delta_k(mu)^2\
$$
giving
$$
-frac{sum_k C_k delta_k(mu)^2}{sum_k C_k delta_k(mu)}=beta_hlongrightarrow (2)
$$
and similarly
$$
-frac{sum_k C_k delta_k(mu)^2e^{-delta_k(mu)}}{sum_k C_k delta_k(mu)e^{-delta_k(mu)}}=beta_hlongrightarrow (3)
$$
then we have three linear equations $(1,2,3)$ in $C_k$ that can be arranged as
$$
M(mu)cdot C = 0, C = (C_k)
$$
This system have nontrivial solution for $det(M(mu)) = 0$ hence the roots for this determinant equation are the eigenvalues $mu_n$ and the eigenfunctions are $e^{-delta_k(mu_n)t}$
The procedure for $G$ is quite similar.
NOTE
Assuming numerical values $lambda_h = 1,beta_h = -10$ we have the operator polynomial
$$
s^3+20s^2+(110-mu)s+100 = 0
$$
with roots $delta_1(mu),delta_2(mu),delta_3(mu)$
The determinant after simplifications reads
$$
det(M) = left(e^{delta _1+delta _2} left(delta _1-delta _2right) delta _3 left(beta
_h+delta _1+delta _2right) left(beta _h+delta _3right)-e^{delta _1+delta _3}
delta _2 left(delta _1-delta _3right) left(beta _h+delta _2right) left(beta
_h+delta _1+delta _3right)+e^{delta _2+delta _3} delta _1 left(delta _2-delta
_3right) left(beta _h+delta _1right) left(beta _h+delta _2+delta
_3right)right) left(cosh left(delta _1+delta _2+delta _3right)-sinh
left(delta _1+delta _2+delta _3right)right)
$$
discarding $cosh (delta_1+delta_2+delta_3)-sinh
(delta_1+delta_2+delta_3)=0$ we follow with
$$
Delta(mu)=e^{delta _1+delta _2} left(delta _1-delta _2right) delta _3 left(beta _h+delta
_1+delta _2right) left(beta _h+delta _3right)-e^{delta _1+delta _3} delta _2
left(delta _1-delta _3right) left(beta _h+delta _2right) left(beta _h+delta
_1+delta _3right)+e^{delta _2+delta _3} delta _1 left(delta _2-delta _3right)
left(beta _h+delta _1right) left(beta _h+delta _2+delta _3right)=0
$$
and then after plotting we have
In red Re[$Delta(mu)$] and in blue Im[$Delta(mu)$]. The zeroes are the eigenvalues $mu_n$
Attached a very basic MATHEMATICA script in order to obtain the first $mu_k$ for $lambda_h = frac 14, beta_h = -10$
parms = {lh -> 1/4, bh -> -10};
F[t_, n_] := Sum[
!(*SubscriptBox[(c), ({1, j})]) Exp[exps[[j]][[1]] t] +
!(*SubscriptBox[(c), ({2, j})]) Exp[exps[[j]][[2]] t] +
!(*SubscriptBox[(c), ({3, j})]) Exp[exps[[j]][[3]] t], {j, 1,n}]
sols = Solve[
lh s^3 - 2 lh bh s^2 + ((lh bh - 1) bh - mu) s + bh^2 == 0, s] /.
parms // FullSimplify
roots = s /. sols;
M = {{1, 1, 1}, {r1^2 + bh r1, r2^2 + bh r2, r3^2 + bh r3},
{E^(-r1) (r1^2 + bh r1), E^(-r2) (r2^2 + bh r2), E^(-r3) (r3^2 + bh r3)}};
det = -Det[M] // FullSimplify
subdet1 = (Cosh[r1 + r2 + r3] - Sinh[r1 + r2 + r3])
subdet2 = det/subdet1 // FullSimplify
subdet20 = subdet2 /. Thread[{r1, r2, r3} -> roots] /. parms;
Plot[Im[subdet20], {mu, -100, 0}, PlotStyle -> {Thick, Black},
PlotRange -> {-10, 10}]
solmu1 = FindRoot[Im[subdet20] == 0, {mu, 0}]
solmu2 = FindRoot[Im[subdet20] == 0, {mu, -7}]
solmu3 = FindRoot[Im[subdet20] == 0, {mu, -20}]
solmu4 = FindRoot[Im[subdet20] == 0, {mu, -40}]
solmu5 = FindRoot[Im[subdet20] == 0, {mu, -60}]
solmu6 = FindRoot[Im[subdet20] == 0, {mu, -80}]
solmu7 = FindRoot[Im[subdet20] == 0, {mu, -110}]
solmu8 = FindRoot[Im[subdet20] == 0, {mu, -150}]
solmu9 = FindRoot[Im[subdet20] == 0, {mu, -190}]
Subscript[mu, 1] = mu /. solmu1;
Subscript[mu, 2] = mu /. solmu2;
Subscript[mu, 3] = mu /. solmu3;
Subscript[mu, 4] = mu /. solmu4;
Subscript[mu, 5] = mu /. solmu5;
Subscript[mu, 6] = mu /. solmu6;
Subscript[mu, 7] = mu /. solmu7;
Subscript[mu, 8] = mu /. solmu8;
Subscript[mu, 9] = mu /. solmu9;
exps = Table[roots /. parms /. {mu -> Subscript[mu, k]}, {k, 1, 9}]
F[t, 9]
$endgroup$
Regarding the first DE the linear differential operator
$$
lambda_h delta^3 - 2 lambda_h beta_h delta^2 + left( (lambda_h beta_h - 1) beta_h - mu right) delta + beta_h^2=0
$$
and the three roots $delta_i(mu), i = 1,2,3$ we have that
$$
F(t) = sum_k C_k e^{-delta_k(mu)t}
$$
using now the boundary conditions
$$
F(0) = sum_k C_k = 0 longrightarrow (1)
$$
and with
$$
F'(0) = -sum_k C_k delta_k(mu)\
F''(0) = sum_k C_k delta_k(mu)^2\
$$
giving
$$
-frac{sum_k C_k delta_k(mu)^2}{sum_k C_k delta_k(mu)}=beta_hlongrightarrow (2)
$$
and similarly
$$
-frac{sum_k C_k delta_k(mu)^2e^{-delta_k(mu)}}{sum_k C_k delta_k(mu)e^{-delta_k(mu)}}=beta_hlongrightarrow (3)
$$
then we have three linear equations $(1,2,3)$ in $C_k$ that can be arranged as
$$
M(mu)cdot C = 0, C = (C_k)
$$
This system have nontrivial solution for $det(M(mu)) = 0$ hence the roots for this determinant equation are the eigenvalues $mu_n$ and the eigenfunctions are $e^{-delta_k(mu_n)t}$
The procedure for $G$ is quite similar.
NOTE
Assuming numerical values $lambda_h = 1,beta_h = -10$ we have the operator polynomial
$$
s^3+20s^2+(110-mu)s+100 = 0
$$
with roots $delta_1(mu),delta_2(mu),delta_3(mu)$
The determinant after simplifications reads
$$
det(M) = left(e^{delta _1+delta _2} left(delta _1-delta _2right) delta _3 left(beta
_h+delta _1+delta _2right) left(beta _h+delta _3right)-e^{delta _1+delta _3}
delta _2 left(delta _1-delta _3right) left(beta _h+delta _2right) left(beta
_h+delta _1+delta _3right)+e^{delta _2+delta _3} delta _1 left(delta _2-delta
_3right) left(beta _h+delta _1right) left(beta _h+delta _2+delta
_3right)right) left(cosh left(delta _1+delta _2+delta _3right)-sinh
left(delta _1+delta _2+delta _3right)right)
$$
discarding $cosh (delta_1+delta_2+delta_3)-sinh
(delta_1+delta_2+delta_3)=0$ we follow with
$$
Delta(mu)=e^{delta _1+delta _2} left(delta _1-delta _2right) delta _3 left(beta _h+delta
_1+delta _2right) left(beta _h+delta _3right)-e^{delta _1+delta _3} delta _2
left(delta _1-delta _3right) left(beta _h+delta _2right) left(beta _h+delta
_1+delta _3right)+e^{delta _2+delta _3} delta _1 left(delta _2-delta _3right)
left(beta _h+delta _1right) left(beta _h+delta _2+delta _3right)=0
$$
and then after plotting we have
In red Re[$Delta(mu)$] and in blue Im[$Delta(mu)$]. The zeroes are the eigenvalues $mu_n$
Attached a very basic MATHEMATICA script in order to obtain the first $mu_k$ for $lambda_h = frac 14, beta_h = -10$
parms = {lh -> 1/4, bh -> -10};
F[t_, n_] := Sum[
!(*SubscriptBox[(c), ({1, j})]) Exp[exps[[j]][[1]] t] +
!(*SubscriptBox[(c), ({2, j})]) Exp[exps[[j]][[2]] t] +
!(*SubscriptBox[(c), ({3, j})]) Exp[exps[[j]][[3]] t], {j, 1,n}]
sols = Solve[
lh s^3 - 2 lh bh s^2 + ((lh bh - 1) bh - mu) s + bh^2 == 0, s] /.
parms // FullSimplify
roots = s /. sols;
M = {{1, 1, 1}, {r1^2 + bh r1, r2^2 + bh r2, r3^2 + bh r3},
{E^(-r1) (r1^2 + bh r1), E^(-r2) (r2^2 + bh r2), E^(-r3) (r3^2 + bh r3)}};
det = -Det[M] // FullSimplify
subdet1 = (Cosh[r1 + r2 + r3] - Sinh[r1 + r2 + r3])
subdet2 = det/subdet1 // FullSimplify
subdet20 = subdet2 /. Thread[{r1, r2, r3} -> roots] /. parms;
Plot[Im[subdet20], {mu, -100, 0}, PlotStyle -> {Thick, Black},
PlotRange -> {-10, 10}]
solmu1 = FindRoot[Im[subdet20] == 0, {mu, 0}]
solmu2 = FindRoot[Im[subdet20] == 0, {mu, -7}]
solmu3 = FindRoot[Im[subdet20] == 0, {mu, -20}]
solmu4 = FindRoot[Im[subdet20] == 0, {mu, -40}]
solmu5 = FindRoot[Im[subdet20] == 0, {mu, -60}]
solmu6 = FindRoot[Im[subdet20] == 0, {mu, -80}]
solmu7 = FindRoot[Im[subdet20] == 0, {mu, -110}]
solmu8 = FindRoot[Im[subdet20] == 0, {mu, -150}]
solmu9 = FindRoot[Im[subdet20] == 0, {mu, -190}]
Subscript[mu, 1] = mu /. solmu1;
Subscript[mu, 2] = mu /. solmu2;
Subscript[mu, 3] = mu /. solmu3;
Subscript[mu, 4] = mu /. solmu4;
Subscript[mu, 5] = mu /. solmu5;
Subscript[mu, 6] = mu /. solmu6;
Subscript[mu, 7] = mu /. solmu7;
Subscript[mu, 8] = mu /. solmu8;
Subscript[mu, 9] = mu /. solmu9;
exps = Table[roots /. parms /. {mu -> Subscript[mu, k]}, {k, 1, 9}]
F[t, 9]
edited Jan 19 at 18:38
answered Jan 11 at 21:58
CesareoCesareo
9,2413517
9,2413517
$begingroup$
Thanks for the explanation. I guess you used $F'/F''$ while writing $(2)$ and $(3)$ while the BC are actually $F''/F'$
$endgroup$
– Indrasis Mitra
Jan 12 at 3:10
$begingroup$
Also will solving for $det(M(mu))=0$ take care of all the possible values of $mu$ that needs to be considered i.e. $mu>0$,$mu=0$ and $mu<0$ ? for finding the eigenvalues ?
$endgroup$
– Indrasis Mitra
Jan 12 at 4:26
$begingroup$
my last comment is pretty ignorant. So actually $F(t)=C_1e^{-delta_1(mu)t}+C_2e^{-delta_2(mu)t}+C_3e^{-delta_3(mu)t}$, for the three roots of the characteristic equation. Am i right ?
$endgroup$
– Indrasis Mitra
Jan 12 at 6:40
$begingroup$
I followed the steps you suggested to atrrive at $mathbb{det}(M(mu))=0$. I find that it has $delta_1(mu)$,$delta_2(mu)$ and $delta_3(mu)$. I have edited the original question to reflect my attempt. I cannot figure out how to proceed further, am i doing something wrong ?
$endgroup$
– Indrasis Mitra
Jan 13 at 3:45
$begingroup$
@IndrasisMitra See attached note.
$endgroup$
– Cesareo
Jan 13 at 9:19
|
show 11 more comments
$begingroup$
Thanks for the explanation. I guess you used $F'/F''$ while writing $(2)$ and $(3)$ while the BC are actually $F''/F'$
$endgroup$
– Indrasis Mitra
Jan 12 at 3:10
$begingroup$
Also will solving for $det(M(mu))=0$ take care of all the possible values of $mu$ that needs to be considered i.e. $mu>0$,$mu=0$ and $mu<0$ ? for finding the eigenvalues ?
$endgroup$
– Indrasis Mitra
Jan 12 at 4:26
$begingroup$
my last comment is pretty ignorant. So actually $F(t)=C_1e^{-delta_1(mu)t}+C_2e^{-delta_2(mu)t}+C_3e^{-delta_3(mu)t}$, for the three roots of the characteristic equation. Am i right ?
$endgroup$
– Indrasis Mitra
Jan 12 at 6:40
$begingroup$
I followed the steps you suggested to atrrive at $mathbb{det}(M(mu))=0$. I find that it has $delta_1(mu)$,$delta_2(mu)$ and $delta_3(mu)$. I have edited the original question to reflect my attempt. I cannot figure out how to proceed further, am i doing something wrong ?
$endgroup$
– Indrasis Mitra
Jan 13 at 3:45
$begingroup$
@IndrasisMitra See attached note.
$endgroup$
– Cesareo
Jan 13 at 9:19
$begingroup$
Thanks for the explanation. I guess you used $F'/F''$ while writing $(2)$ and $(3)$ while the BC are actually $F''/F'$
$endgroup$
– Indrasis Mitra
Jan 12 at 3:10
$begingroup$
Thanks for the explanation. I guess you used $F'/F''$ while writing $(2)$ and $(3)$ while the BC are actually $F''/F'$
$endgroup$
– Indrasis Mitra
Jan 12 at 3:10
$begingroup$
Also will solving for $det(M(mu))=0$ take care of all the possible values of $mu$ that needs to be considered i.e. $mu>0$,$mu=0$ and $mu<0$ ? for finding the eigenvalues ?
$endgroup$
– Indrasis Mitra
Jan 12 at 4:26
$begingroup$
Also will solving for $det(M(mu))=0$ take care of all the possible values of $mu$ that needs to be considered i.e. $mu>0$,$mu=0$ and $mu<0$ ? for finding the eigenvalues ?
$endgroup$
– Indrasis Mitra
Jan 12 at 4:26
$begingroup$
my last comment is pretty ignorant. So actually $F(t)=C_1e^{-delta_1(mu)t}+C_2e^{-delta_2(mu)t}+C_3e^{-delta_3(mu)t}$, for the three roots of the characteristic equation. Am i right ?
$endgroup$
– Indrasis Mitra
Jan 12 at 6:40
$begingroup$
my last comment is pretty ignorant. So actually $F(t)=C_1e^{-delta_1(mu)t}+C_2e^{-delta_2(mu)t}+C_3e^{-delta_3(mu)t}$, for the three roots of the characteristic equation. Am i right ?
$endgroup$
– Indrasis Mitra
Jan 12 at 6:40
$begingroup$
I followed the steps you suggested to atrrive at $mathbb{det}(M(mu))=0$. I find that it has $delta_1(mu)$,$delta_2(mu)$ and $delta_3(mu)$. I have edited the original question to reflect my attempt. I cannot figure out how to proceed further, am i doing something wrong ?
$endgroup$
– Indrasis Mitra
Jan 13 at 3:45
$begingroup$
I followed the steps you suggested to atrrive at $mathbb{det}(M(mu))=0$. I find that it has $delta_1(mu)$,$delta_2(mu)$ and $delta_3(mu)$. I have edited the original question to reflect my attempt. I cannot figure out how to proceed further, am i doing something wrong ?
$endgroup$
– Indrasis Mitra
Jan 13 at 3:45
$begingroup$
@IndrasisMitra See attached note.
$endgroup$
– Cesareo
Jan 13 at 9:19
$begingroup$
@IndrasisMitra See attached note.
$endgroup$
– Cesareo
Jan 13 at 9:19
|
show 11 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069768%2feigen-values-of-a-third-order-linear-homogenous-ode%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown