Deriving quantiles for $L_1$ using $textbf{P}{ L_n > n cdot a }$ as n tends to infinity
$begingroup$
Given a random variable
$$L_n = sum_{i=1}^n X_i Z_i $$
where $X_i sim Bernoulli(p)$ and $Z_i sim exp(theta)$. I assume ${Z_i }$ is i.i.d. and the sequences ${X_i }$ and ${Z_i }$ are independent.
According to Cramér’s large deviation theorem,
$$lim_{n rightarrow infty} frac{1}{n} log left( textbf{P}{ L_n > n cdot a }right) = - Lambda^*(a)
\
Lambda^*(a) = sup_{xi in mathbb{R}} left( xi a - Lambda (xi) right)
\
Lambda (xi) = log left(kappa(xi) right) $$
where $kappa$ denotes the moment generating function for $X_1 Z_1$ and $a>0$. Note that $kappa(xi) = frac{p theta}{theta - xi}+1-p$. I have calculated the $xi^*$ that solves $Lambda^*(a)$
$$xi(a,p,theta)^*= frac{theta (2-p) - sqrt{p cdot (theta^2p + frac{4(p+theta)}{a}) } }{2(1-p)}.$$
Now, by using the approximation $ textbf{P}{ L_n > n cdot a } approx e^{-n Lambda^*(a)} $, I want to calculate the $alpha$-quantile $(VaR_{alpha})$, where I think of $n$ as "large" and $alpha$, $theta$ and $p$ as given. Formally, I can get this far:
begin{align*}
text{VaR}_alpha(L) = & text{inf} { x in mathbb{R} : P(L>x) leq 1-alpha } \
= & text{inf} { a in mathbb{R} : P left( L>n cdot a right ) leq 1-alpha ) \
approx& inf { a in mathbb{R} : e^{-n Lambda^*(a ) } = 1-alpha
}
end{align*}
where the equality comes from $Lambda^*(a)$ being smooth. Thus I have to find the smallest $a$ that solves $e^{-nLambda^*(a )} = alpha$ for a "large" n.
begin{align*}
e^{-nLambda^*(a )} = 1- alpha
\
e^{-n(xi^* a - log (kappa (xi^*)) )} =1- alpha
\
kappa(xi^*)^n e^{-n xi^* a} = 1- alpha
end{align*}
However, I cannot directly solve this equation since $a$ is in $xi^*$.
How do I proceed?
real-analysis limits probability-theory
$endgroup$
add a comment |
$begingroup$
Given a random variable
$$L_n = sum_{i=1}^n X_i Z_i $$
where $X_i sim Bernoulli(p)$ and $Z_i sim exp(theta)$. I assume ${Z_i }$ is i.i.d. and the sequences ${X_i }$ and ${Z_i }$ are independent.
According to Cramér’s large deviation theorem,
$$lim_{n rightarrow infty} frac{1}{n} log left( textbf{P}{ L_n > n cdot a }right) = - Lambda^*(a)
\
Lambda^*(a) = sup_{xi in mathbb{R}} left( xi a - Lambda (xi) right)
\
Lambda (xi) = log left(kappa(xi) right) $$
where $kappa$ denotes the moment generating function for $X_1 Z_1$ and $a>0$. Note that $kappa(xi) = frac{p theta}{theta - xi}+1-p$. I have calculated the $xi^*$ that solves $Lambda^*(a)$
$$xi(a,p,theta)^*= frac{theta (2-p) - sqrt{p cdot (theta^2p + frac{4(p+theta)}{a}) } }{2(1-p)}.$$
Now, by using the approximation $ textbf{P}{ L_n > n cdot a } approx e^{-n Lambda^*(a)} $, I want to calculate the $alpha$-quantile $(VaR_{alpha})$, where I think of $n$ as "large" and $alpha$, $theta$ and $p$ as given. Formally, I can get this far:
begin{align*}
text{VaR}_alpha(L) = & text{inf} { x in mathbb{R} : P(L>x) leq 1-alpha } \
= & text{inf} { a in mathbb{R} : P left( L>n cdot a right ) leq 1-alpha ) \
approx& inf { a in mathbb{R} : e^{-n Lambda^*(a ) } = 1-alpha
}
end{align*}
where the equality comes from $Lambda^*(a)$ being smooth. Thus I have to find the smallest $a$ that solves $e^{-nLambda^*(a )} = alpha$ for a "large" n.
begin{align*}
e^{-nLambda^*(a )} = 1- alpha
\
e^{-n(xi^* a - log (kappa (xi^*)) )} =1- alpha
\
kappa(xi^*)^n e^{-n xi^* a} = 1- alpha
end{align*}
However, I cannot directly solve this equation since $a$ is in $xi^*$.
How do I proceed?
real-analysis limits probability-theory
$endgroup$
add a comment |
$begingroup$
Given a random variable
$$L_n = sum_{i=1}^n X_i Z_i $$
where $X_i sim Bernoulli(p)$ and $Z_i sim exp(theta)$. I assume ${Z_i }$ is i.i.d. and the sequences ${X_i }$ and ${Z_i }$ are independent.
According to Cramér’s large deviation theorem,
$$lim_{n rightarrow infty} frac{1}{n} log left( textbf{P}{ L_n > n cdot a }right) = - Lambda^*(a)
\
Lambda^*(a) = sup_{xi in mathbb{R}} left( xi a - Lambda (xi) right)
\
Lambda (xi) = log left(kappa(xi) right) $$
where $kappa$ denotes the moment generating function for $X_1 Z_1$ and $a>0$. Note that $kappa(xi) = frac{p theta}{theta - xi}+1-p$. I have calculated the $xi^*$ that solves $Lambda^*(a)$
$$xi(a,p,theta)^*= frac{theta (2-p) - sqrt{p cdot (theta^2p + frac{4(p+theta)}{a}) } }{2(1-p)}.$$
Now, by using the approximation $ textbf{P}{ L_n > n cdot a } approx e^{-n Lambda^*(a)} $, I want to calculate the $alpha$-quantile $(VaR_{alpha})$, where I think of $n$ as "large" and $alpha$, $theta$ and $p$ as given. Formally, I can get this far:
begin{align*}
text{VaR}_alpha(L) = & text{inf} { x in mathbb{R} : P(L>x) leq 1-alpha } \
= & text{inf} { a in mathbb{R} : P left( L>n cdot a right ) leq 1-alpha ) \
approx& inf { a in mathbb{R} : e^{-n Lambda^*(a ) } = 1-alpha
}
end{align*}
where the equality comes from $Lambda^*(a)$ being smooth. Thus I have to find the smallest $a$ that solves $e^{-nLambda^*(a )} = alpha$ for a "large" n.
begin{align*}
e^{-nLambda^*(a )} = 1- alpha
\
e^{-n(xi^* a - log (kappa (xi^*)) )} =1- alpha
\
kappa(xi^*)^n e^{-n xi^* a} = 1- alpha
end{align*}
However, I cannot directly solve this equation since $a$ is in $xi^*$.
How do I proceed?
real-analysis limits probability-theory
$endgroup$
Given a random variable
$$L_n = sum_{i=1}^n X_i Z_i $$
where $X_i sim Bernoulli(p)$ and $Z_i sim exp(theta)$. I assume ${Z_i }$ is i.i.d. and the sequences ${X_i }$ and ${Z_i }$ are independent.
According to Cramér’s large deviation theorem,
$$lim_{n rightarrow infty} frac{1}{n} log left( textbf{P}{ L_n > n cdot a }right) = - Lambda^*(a)
\
Lambda^*(a) = sup_{xi in mathbb{R}} left( xi a - Lambda (xi) right)
\
Lambda (xi) = log left(kappa(xi) right) $$
where $kappa$ denotes the moment generating function for $X_1 Z_1$ and $a>0$. Note that $kappa(xi) = frac{p theta}{theta - xi}+1-p$. I have calculated the $xi^*$ that solves $Lambda^*(a)$
$$xi(a,p,theta)^*= frac{theta (2-p) - sqrt{p cdot (theta^2p + frac{4(p+theta)}{a}) } }{2(1-p)}.$$
Now, by using the approximation $ textbf{P}{ L_n > n cdot a } approx e^{-n Lambda^*(a)} $, I want to calculate the $alpha$-quantile $(VaR_{alpha})$, where I think of $n$ as "large" and $alpha$, $theta$ and $p$ as given. Formally, I can get this far:
begin{align*}
text{VaR}_alpha(L) = & text{inf} { x in mathbb{R} : P(L>x) leq 1-alpha } \
= & text{inf} { a in mathbb{R} : P left( L>n cdot a right ) leq 1-alpha ) \
approx& inf { a in mathbb{R} : e^{-n Lambda^*(a ) } = 1-alpha
}
end{align*}
where the equality comes from $Lambda^*(a)$ being smooth. Thus I have to find the smallest $a$ that solves $e^{-nLambda^*(a )} = alpha$ for a "large" n.
begin{align*}
e^{-nLambda^*(a )} = 1- alpha
\
e^{-n(xi^* a - log (kappa (xi^*)) )} =1- alpha
\
kappa(xi^*)^n e^{-n xi^* a} = 1- alpha
end{align*}
However, I cannot directly solve this equation since $a$ is in $xi^*$.
How do I proceed?
real-analysis limits probability-theory
real-analysis limits probability-theory
edited Jan 12 at 15:15
Mads Hulgaard
asked Jan 11 at 12:12
Mads HulgaardMads Hulgaard
748
748
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069770%2fderiving-quantiles-for-l-1-using-textbfp-l-n-n-cdot-a-as-n-tends%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069770%2fderiving-quantiles-for-l-1-using-textbfp-l-n-n-cdot-a-as-n-tends%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown