prove $a,b,c$ in A.P if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$

Multi tool use
$begingroup$
In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.
My Attempt
$$
sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
$$
it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?
trigonometry triangle
$endgroup$
add a comment |
$begingroup$
In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.
My Attempt
$$
sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
$$
it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?
trigonometry triangle
$endgroup$
add a comment |
$begingroup$
In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.
My Attempt
$$
sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
$$
it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?
trigonometry triangle
$endgroup$
In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.
My Attempt
$$
sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
$$
it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?
trigonometry triangle
trigonometry triangle
asked Jan 4 at 16:37


ss1729ss1729
1,9211723
1,9211723
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$
Use
$$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$
$endgroup$
$begingroup$
i was thinking of doing that straightaway .. but is there a better way other than this ?
$endgroup$
– ss1729
Jan 4 at 16:50
add a comment |
$begingroup$
It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
Can you finish now?
$endgroup$
add a comment |
$begingroup$
Hint:
Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,
$$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$
$endgroup$
add a comment |
$begingroup$
You can first deduce
$$
tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
=frac{20}{37}
$$
Therefore
$$
sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
$$
Similarly,
$$
sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
$$
By the sine law,
$$
frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061807%2fprove-a-b-c-in-a-p-if-tan-dfraca2-dfrac56-and-tan-dfracc2-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$
Use
$$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$
$endgroup$
$begingroup$
i was thinking of doing that straightaway .. but is there a better way other than this ?
$endgroup$
– ss1729
Jan 4 at 16:50
add a comment |
$begingroup$
$$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$
Use
$$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$
$endgroup$
$begingroup$
i was thinking of doing that straightaway .. but is there a better way other than this ?
$endgroup$
– ss1729
Jan 4 at 16:50
add a comment |
$begingroup$
$$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$
Use
$$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$
$endgroup$
$$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$
Use
$$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$
edited Jan 4 at 16:50
answered Jan 4 at 16:48
lab bhattacharjeelab bhattacharjee
225k15157275
225k15157275
$begingroup$
i was thinking of doing that straightaway .. but is there a better way other than this ?
$endgroup$
– ss1729
Jan 4 at 16:50
add a comment |
$begingroup$
i was thinking of doing that straightaway .. but is there a better way other than this ?
$endgroup$
– ss1729
Jan 4 at 16:50
$begingroup$
i was thinking of doing that straightaway .. but is there a better way other than this ?
$endgroup$
– ss1729
Jan 4 at 16:50
$begingroup$
i was thinking of doing that straightaway .. but is there a better way other than this ?
$endgroup$
– ss1729
Jan 4 at 16:50
add a comment |
$begingroup$
It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
Can you finish now?
$endgroup$
add a comment |
$begingroup$
It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
Can you finish now?
$endgroup$
add a comment |
$begingroup$
It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
Can you finish now?
$endgroup$
It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
Can you finish now?
answered Jan 4 at 17:08


Dr. Sonnhard GraubnerDr. Sonnhard Graubner
74.9k42865
74.9k42865
add a comment |
add a comment |
$begingroup$
Hint:
Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,
$$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$
$endgroup$
add a comment |
$begingroup$
Hint:
Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,
$$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$
$endgroup$
add a comment |
$begingroup$
Hint:
Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,
$$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$
$endgroup$
Hint:
Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,
$$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$
answered Jan 4 at 17:25
lab bhattacharjeelab bhattacharjee
225k15157275
225k15157275
add a comment |
add a comment |
$begingroup$
You can first deduce
$$
tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
=frac{20}{37}
$$
Therefore
$$
sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
$$
Similarly,
$$
sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
$$
By the sine law,
$$
frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
$$
$endgroup$
add a comment |
$begingroup$
You can first deduce
$$
tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
=frac{20}{37}
$$
Therefore
$$
sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
$$
Similarly,
$$
sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
$$
By the sine law,
$$
frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
$$
$endgroup$
add a comment |
$begingroup$
You can first deduce
$$
tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
=frac{20}{37}
$$
Therefore
$$
sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
$$
Similarly,
$$
sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
$$
By the sine law,
$$
frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
$$
$endgroup$
You can first deduce
$$
tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
=frac{20}{37}
$$
Therefore
$$
sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
$$
Similarly,
$$
sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
$$
By the sine law,
$$
frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
$$
answered Jan 4 at 17:56


egregegreg
181k1485203
181k1485203
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061807%2fprove-a-b-c-in-a-p-if-tan-dfraca2-dfrac56-and-tan-dfracc2-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
a7LyKPw4kB YYb jg,O,U4lw,KogbN2minq6k2jKMAKoz5 ngReZP44uIaP7,CRQFJ1sBXJaZ,zfFOO,LpPtNAYI94